

The RISC Chip
A Programmer's Guide

The RISC Chip
A Programmer's Guide

Alex van Someren

CarolAtack

...
ADDISON-WESLEY PUBLISHING COMPANY

WOKINGHAM, ENGLAND • READING, MASSACHUSITTS • MENLO PARK, CALIFORNIA • NEW YORK

DON MILLS, ONTARIO • AMSTERDAM • BONN • SYDNEY • SINGAPORE

TOKYO• MADRID• SAN JUAN• MILAN• PARIS• MEXICO CITY• SEOUL• TAIPEI

© 1994 Addison-Wesley Publishers Ltd.
© 1994 Addison-Wesley Publishing Company Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior written permission of the publisher.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Addison-Wesley has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book. A list of the
trademark designations and their owners appears on page xviii .

Cover designed by Designers & Partners , Oxford
and printed by The Ethedo Press, High Wycombe, Bucks
Camera-ready copy prepared by the author.
Printed and bound in Great Britain by The University Press, Cambridge.

First printed 1993

ISBN 0-201-62410-9

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data is available

In memory of Al Thomas

Foreword

In 1986, Apple established an R&D group called the Advanced Technol­
ogy Group (ATG). ATG's mission was to explore new technologies that
would be important to Apple in the 1990s. We began research and
advanced development in areas such as multimedia, object-oriented sys­
tems, handheld devices and RISC.

The goal of one early ATG project, code-named Mobius, was to
design and prototype a low-cost, high-performance experimental compu­
ter. In their search for an appropriate processor, the Mobius engineers dis­
covered Acorn's ARM, the first commercial RISC processor. They found
the ARM to be easy to program and to deliver impressive performance
for its price.

During the ensuing years, various Apple groups incorporated ver­
sions of the ARM into other experimental designs, including a printer
controller and a communications controller. The elegant architecture
gained a small but devoted following in the company. Yet it still did not
make its way into any Apple product.

In the summer of 1990 a small 'skunkworks' group called the
Advanced Products Group (APG) was defining a new system architec­
ture called 'Newton'. We sought a microprocessor to power the first prod­
uct in the line. Given the cost, mobility and performance goals of the
project, we specified a fully static part with frugal memory requirements
offering a high MIPS-per-watt ratio at a low cost.

We had determined from an earlier ATG analysis of microprocessor
architectures that RISC technology covers a wide spectrum of products.
The most publicized RISC architectures at that time were those designed
for high-end workstations. In the workstation market, top speed is the
single most important design criterion. One example of a high-end RISC
processor is IBM's Power architecture. Apple and Motorola have worked
with IBM to develop Power into PowerPC. The Macintosh computer fam­
ily will attain new levels of performance through Power PC.

vii

viii Foreword

In 1990, designs for embedded control and other high-volwne appli­
cations were less well known than those for workstation RISC processors.
In these markets, low power conswnption, small die size and very low
costs are more important factors than absolute speed. While specifying
the requirements of a processor for Newton, we noted that our criteria
were similar to those for embedded control applications.

That summer, we conducted an assessment of low-cost RISC proces­
sors, including designs that our semiconductor vendors had on their
drawing boards. We concluded that the simplicity of the ARM bestowed
upon it inherent advantages that its competitors would be unlikely to
soon surmount. These advantages included die size, cost, power con­
swnption, instruction set efficiency and ease of embedding into ASIC
designs.

Although we were impressed by Acorn's processor architecture, we
became concerned that their requirements and ours would diverge as
years went by. To alleviate that concern, we agreed that an Apple subsidi­
ary, Apple UK would, with VLSI Technology and Acorn, invest in an
independent joint venture to develop and market ARM technology.

The founders charged the new company, ARM Ltd, with transform­
ing the ARM from an Acorn standard into an industry standard. The
product family would address the nascent market for low-cost, low­
power conswnption RISC processors. We felt that small, hand-held com­
puting devices would become a significant growth area for our industry
and that ARM had the right characteristics to win a significant share of
that market.

Because of its CISC-like code density, software for an ARM proces­
sor requires less memory than software for RISC architectures targeted at
the workstation market. In late 1990 and early 1991, Apple worked with
ARM Ltd to enhance this advantage by developing a novel memory man­
agement unit with which the Newton Operating System can control page
access at a fine grain.

The ARM 610 has fulfilled all the requirements that we established
in 1990. ARM Ltd's cycle time, quality and customer orientation have
exceeded our expectations. The company's opportunities for technical
innovation in the low-power realm are legion.

At the time of writing, the first model of Newton has just been intro­
duced into the market. Since the first public demonstrations of Newton
technologies over a year ago, this archetypal PDA has generated wide­
spread interest. As Apple plans future Newton models, we envision that
ARM family processors will play an important role in the product line.

RISC assembly programming is generally of interest only to writers
of compilers. The ARM is unique in having an instruction set that is not
only simple and space-efficient but also straightforward and delightful to
use. This factor was important in the development of Newton systems
software. Although the ARM C compiler generates impressively tight

ix

object code, the Newton developers could not express certain critical
inner loops in C and had to code them in assembler.

Programming the ARM RISC Chip provides a thorough introduction
to the art of ARM assembly language programming. It is an essential ref­
erence for engineers who need to code to the hardware or who wish to
create software development tools. I also recommend it to people who
seek an understanding of a unique and elegant processor that is poised to
have a significant influence on the electronics industry in the 1990s.

Larry Tesler
Chief Scientist, Apple Computer, Inc.
Member of the Board, ARM Holdings, Ltd
13Aug1993

1.1

1.2

Introduction

Who should read this book

This book is aimed at a wide range of people who share an interest in
microprocessor technology and ARM devices in particular:

• Programmers writing for ARM-based hardware systems.
• Hardware designers looking for an overview of the ARM world.
• Anyone interested in the commercial application of RISC

technology.

It provides an introduction to the ARM architecture and to the
instruction set, and to the background of ARM Ltd and ARM processors.

Inside this book

Each chapter of this book focuses on a particular aspect of ARM technol­
ogy, leading the reader through it and providing real-life examples of
instructions and programming to illustrate many of the points made.

Chapter 1 provides an overview of the genesis and early history of
the ARM chip, and the foundation of ARM Ltd. It provides the context
within which ARM processors were developed, and explains why the
ARM was targeted at its particular market sector.

Chapter 2 examines the ARM microprocessor architecture in detail,

xi

xii Introduction

1.3

focusing on the ARM6 processor core, which is the basis of the devices
used by Apple and 3DO and is the core of all current generation ARM
devices.

Chapter 3 looks at some of the options available to programmers
who want to write for ARM-based hardware. It includes a detailed
description of the elements of the ARM Cross Development Toolkit. It
aims to provide a sufficient introduction to ARM Assembler and C that
programmers reading this book can type in and assemble/ compile the
program examples provided throughout.

Chapter 4 describes the ARM integer instruction set in detail.
Chapter 5 covers aborts, interrupts and exception handling.
Chapter 6 examines the extensions to the ARM architecture. It

focuses on the data cache, the write buffer and the memory management
unit, all featured in the ARM600.

Chapter 7 describes the possibilities for interfacing ARM processors
to other devices, examining the bus interface in detail.

Chapter 8 describes the many variants of ARM processor available,
both standalone devices and macrocells which can be combined into new
devices. It describes existing devices in detail, and concludes with a look
at future directions for the ARM architecture.

Chapter 9 looks at the floating point instruction set.
The appendices provide a page-per-instruction guide to ARM inte­

ger and floating point instructions.

Acknowledgements

This book would not have been possible without the cooperation and
support of a large number of people from many companies.

Everyone at ARM Ltd has provided a great deal of assistance. Par­
ticular thanks go to Dave Jaggar, David Seal, Jamie Urquhart, Pete Har­
rod, Robin Saxby, Tudor Brown, Ian Rickards, John Biggs and Simon
Segars, for their comments on the manuscript and patience in answering
technical queries. Pete Magowan provided invaluable assistance both in
kickstarting this project and encouraging it to completion.

The following staff at ARM Ltd's foundries and partners also pro-
vided useful comments and assistance:

Sharp: Graham Barker
VLSI: Mike Kaskowitz, Ed Begun, Jamie Smith, Jeff Hendy
GPS: Terry McCloskey, Geoff Callow, Ian Philips
The authors would like to thank: Nicky Jaeger at Addison-Wesley

for her patience and encouragement; Professor Steve Furber for his assist-

Acknowledgements xiii

ance; David Fell, who contributed many of the programming examples;
and Venice van Someren for enduring countless technical discussions of
no interest to her.

Foreword vii

Introduction xi
1.1 Who should read this book xi
1.2 Inside this book xi
1.3 Acknowledgements xii

1 The history of the ARM CPU 1
1.1 Introduction 1
1.2 The development of the ARM chip at Acorn 2
1.3 ARM becomes the Advanced RISC Machine 10
1.4 ARM design objectives 15
1.5 RISC versus CISC processor design 18
1.6 Summary 19
1.7 Introduction 21

2 The ARM6 CPU core architecture 21
2.1 Introduction 21
2.2 The ARM6 data path 22
2.3 The ARM6 programming model 28
2.4 Summary 35

3 The ARM development environment 37
3.1 Introduction 37
3.2 ARM Software Development Toolkit (SOT) 38
3.3 The ARM Assembler 40
3.4 The ARM C compiler 53
3.5 The ARM Linker 55
3.6 The ARM Symbolic Debugger 57
3.7 The ARMulator 59

xv

xvi

3.8 Summary 59

4 The ARM6 integer instruction set 61
4.1 Introduction 61
4.2 Syntax conventions 62
4.3 Conditional execution 62
4.4 Data processing instructions 65
4.5 Programming examples 104
4.6 Summary 105

5 Aborts, exceptions and interrupts 107
5.1 Introduction 107
5.2 ARM processor exceptions 108
5.3 Types of ARM exception 111
5.4 An example interrupt handler 114
5.5 Interrupt latency 117
5.6 Exceptions from the application 's perspective 117
5.7 Summary 119

6 ARM architecture extensions 121
6.1 Introduction 121
6.2 ARM600 system control coprocessor 122
6.3 Instruction and Data Cache (IDC) 128
6.4 Data Write Buffer (WB) 132
6.5 Memory Management Unit (MMU) 134
6.6 Summary 148

7 ARM CPU hardware and interfacing 149
7. 1 Introduction 149
7.2 The ARM600 bus interface 150
7.3 Clock inputs and wait-state control 150
7.4 Address bus and control signals 153
7.5 Data bus and control signals 155
7.6 Interrupt inputs and reset 157
7.7 Coprocessor interface 158
7.8 Bus enables and test inputs 160
7.9 Memory management, cache control and multi-processor

support 162
7.1 O Summary 162

8 ARM CPUs, derivatives and support ICs 165
8.1 Introduction 165

xvii

8.2 Variants of the ARM CPU 165
8.3 ARM derivatives and support ICs 172
8.4 Support devices 175
8.5 Summary 179

9 The ARM floating point instruction set 181
9.1 Introduction 181
9.2 Support for floating point arithmetic 181
9.3 Floating point programmer's model 182
9.4 IEEE arithmetic fundamentals 183
9.5 Summary 207

Instruction set mnemonic summary and reference 209

Floating point instruction set 247

Assembler directives 291

Bibliography 339

Index 341

xviii

Trademark notice

ARM-powered™ and QuickDesign™ are trademarks of ARM Limited.
Apple®, Apple II®, Apple llGS®, Macintosh™, the Apple logo and QuickDraw™,
are trademarks of Apple Computer, Inc. Newton™ and the Lightbulb logo are
trademarks of Apple Computer Inc. used under licence.
300™ and Interactive Multiplayer™ are trademarks of The 300 Company.
Motorola™, 68000™, and 68040™ are trademarks of Motorola, Inc.
NuBus™ is a trademark of Texas Instruments Inc.
Alpha™ and VAX™ are trademarks of the Digital Equipment Corporation.
Intel™, i860™, 80386™, 80387™ and 80486™ are trademarks of Intel Corpora­
tion.
FasMath™ is a trademark of Cyrix Corporation.
AMO 29000™ is a trademark of AMO Corporation.
XGA™ and IBM™ are trademarks of the International Business Machines Corpo­
ration.
QuickColor™ is a trademark of Radius, Inc.
UNIX™ is a trademark of Novell Corporation.
SPARC™ is a trademark of Spare International, Inc.
Sun™ and SunOs™ are trademarks of Sun Microsystems, Inc.
Rockwell 6502™ is a trademark of Rockwell International Corporation.
32016™ is a trademark of National Semiconductor Corporation.
Within this publication, the term BBC is used as an abbreviation for British Broad­
casting Corporation.
Acorn Archimedes™ is a trademark of Acorn Computers Ltd.
Clipper™ is a trademark of Intergraph Corporation.
MIPS™ is a trademark of MIPS Corporation.

1.1 ·

I j i

1
The history of the ARM CPU

Introduction

This chapter outlines the history of the ARM processors from their begin­
nings as the proprietary solution for a particular set of problems in a par­
ticular company to their current status as a highly successful, flexible and
customizable set of processors available on the open market.

While some aspects of this story are of purely anecdotal interest,
others shed light on some ARM design decisions, which were taken in an
unusual set of circumstances to meet specific goals, now seen to meet the
demands of an innovative and exciting market place requiring good per­
formance and low power consumption, balanced with low cost.

British readers will probably be familiar with Acorn Computers
Ltd, its products and its history of phenomenal success in the UK compu­
ter market of the early 1980s. Other readers may not have had access to as
much information on the vibrant home computer market in the UK then,
or to Acorn's record for technical innovation.

The story starts with the original development of the ARM proces­
sor, and ends with the establishment of ARM Ltd a.s a global force in the
microprocessor industry. In between, it sheds some light on various
design decisions which were taken in the genesis of the ARM design.

2 The history of the ARM CPU

1.2

1.2.1

The development of the ARM chip at Acorn

The history of the ARM processor family is closely intertwined with that
of the British personal computer industry, and reflects differences
between the development of the British and American computer indus­
tries. A number of different manufacturers achieved prominence in this
briefly flowering market, but then never gained a great deal of success
beyond the UK and Europe.

The smaller size of the UK market (compared to the US) also
ensured that even the most successful companies could not achieve the
size of American rivals, affecting their ability to invest in research and
development and to ride out the ups and downs of the market for per­
sonal and home computers.

Acorn's background

The first ARM chip, the Acorn RISC Machine, was developed between
1983 and 1985 by the advanced research and development team at Acorn
Computers, a pioneering developer of microcomputers in the UK. During
this time Acorn was one of the leading names in the British personal com­
puter market. Other significant players were Sinclair, another Cambridge
start-up, and to a les~er extent the American companies Apple, Commo­
dore and Tandy, along with a host of smaller British developers produc­
ing a wide range of machines targeted at the booming home computer
market.

Acorn's initial success was sealed when the British Broadcasting
Corporation (BBC) commissioned a new home computer model from the
company to be sold as the BBC Microcomputer, to tie in with a public
computer education programme shown on BBC television in the UK.

The release of the BBC Micro in 1982 caught the crest of the home
computer wave in Britain, and the BBC name gave Acorn's design added
credibility compared with competing machines from the many other
developers in this market. Sales exceeded all expectations: original esti­
mates by the BBC and Acorn were that at best tens of thousands of units
would be sold. In fact, to date nearly two million BBC Micro-compatible
computers have been sold by Acorn, and it quickly grew from a small
company with tens of staff into a medium-sized company employing
hundreds with an annual turnover of tens of millions of pounds.

The BBC Micro was based around the 8-bit 6502 processor from
Rockwell, the same chip that powered the Apple IL Initial models fea­
tured colour graphics and 32 kbyte of random access memory. Data was
stored on audio cassettes; hard and floppy disk drive interfaces were also

1.2.2

The development of the ARM chip at Acorn 3

available, and Acorn was an early proponent of local area networking
with its Econet system. Another important feature of the BBC Micro was
its capacity to accept a second processor attached via an expansion port
known as the Tube. Connectivity, interoperability and networking were
familiar concepts to many BBC Micro users long before they were estab­
lished in the rest of the personal computer world, via such options as the
Tube. This required a degree of interoperability between host and second
processor, as well as Acorn's Econet local area networking standard.

Conceiving the Acorn RISC Machine

Acorn was to continue to release 6502-based variants of the BBC Micro for
four more years. Production of the most successful model, the Master,
only ceased in May 1993, and these computers form the backbone of com­
puting provision in many British schools. However it was clear to the
advanced research and development team that there was no clear step
forward to the next generation of processors, no obvious 16-bit processor
to use in future Acorn systems. One Acorn model, the Communicator,
used a 16-bit 6502 derivative, the 65C816 processor, the same device as
used in the Apple IIGS, but Acorn's designers were not convinced that
this chip represented the advance they were looking for.

The team tried all of the 16- and 32-bit processors then on the mar­
ket but found none to be satisfactory for their purposes; in particular, the
data bandwidth was not sufficiently greater than that offered by the 6502
to justify basing the next generation of Acorn computers upon them.
Processors were tested by building BBC Micro 'second processor' units
based upon them, and it became clear that no chip would be found to fit
the very precise requirements on which the Acorn design team had set­
tled.

Acorn's processor requirements

Acorn's aim at that time was to produce personal computers which met
the needs of the business community by providing office automation
facilities. Clearly, more power was needed than was offered by the 6502.
In the fine tradition of the computer hobbyist, the design team decided to
develop their own processor, which would provide an environment with
some similarities to the familiar 6502 instruction set but lead Acorn and
its products directly into the world of 32-bit computing.

Acorn has always been renowned for the calibre of its research and
development staff. It was able to pick the cream of graduates from Cam­
bridge University, home of a highly regarded computer science faculty, as
well as attracting staff from around the world.

To them, designing a processor from scratch to meet their carefully

4 The history of the ARM CPU

,.

1.2.3

specified criteria was an obvious thing to do. Acorn's phenomenal suc­
cess with its 8-bit computers had created a research and development
environment where staff could afford to pursue advanced projects which
would not necessarily result in immediately saleable products, and were
actively encouraged to do so.

Genesis of ARM in comparison with other RISC processors

In fact, many of the commercially available RISC processors intended for
use as the CPU of a personal computer or workstation were designed or
developed in-house by system developers, when microprocessor devel­
opers were either concentrating on improving their CISC designs or
designing RISC chips for supporting roles or as embedded controllers.

For example, Suri developed the SPARC RISC chip and architecture
for its own computer workstations, while notable RISC processors from
established chip producers include Intel's i860 graphics processor and
AMD's 29000, which has mainly been used as a graphics accelerator or in
printers. However, both Sun's and MIPS' efforts were based on earlier
research efforts at Stanford and Berkeley universities respectively, while
Acorn's project was effectively begun from scratch, although reports on
the Berkeley and Stanford research were read by the Acom team and
were part of the inspiration behind designing a RISC processor.

One of the reasons the ARM was designed as a small-scale processor
was that the resources to design it were not sufficient to allow the creation
of a large and complex device. While this is now presented as (and genu­
inely is) a technical plus for the ARM processor core, it began as a neces­
sity for a processor designed by a team of talented but inexperienced
designers (outside of •university projects, most ·team members were pro­
grammers and board-level circuit designers) using new tools, some of
which were far from state-of-the-art. With these restrictions on design
and testing, it is hardly a surprise that a small device was developed.

While the ARM was developed as a custom device for a highly spe­
cific purpose, the team designing it felt that the best way to produce a
good custom chip was to produce a chip with good all-round perform­
ance.

Designing the first ARM

Work on the development of what was to become the ARM began in 1983.
Working samples were received in 1985. The team developing it included
Steve Furber, now ICL Professor of Computer Engineering at Manchester
University, and Roger Wilson, both of whom had worked on the design of
the BBC Micro, as well as Robert Heaton who led the VLSI design group
within Acorn.

The development of the ARM chip at Acorn 5

The design team worked in secret to create a chip which met their
requirements. As described earlier, these were for a processor which
retained the ethos of the 6502 but in a 32-bit RISC environment, and
implemented this in a small device which it would be possible to design
and test easily, and to fabricate cheaply.

First the instruction set was specified by Wilson, based on his
knowledge gained as the author of much of the original software for the
BBC Micro, including its BASIC interpreter. The important initial deci­
sions were to use a fixed instruction length and a load/ store model. Other
design decisions were taken on an instruction by instruction basis.

Modelling the ARM1 instruction set

The first model of the ARM instruction set was written in BASIC, an
approach which made it easy to set everything out and develop a proto­
type quickly, but proved less flexible when the hardware design needed
to be tested and precise timings derived. The subsequent model of the
ARM hardware was also written in BASIC. It required a BBC Micro fitted
with a 6502 second processor to run, and no further testing was required
to verify the design. A team of four people worked on the design, with
the two VLSI designers working on the device sharing a single work­
station. The actual physical design of the chips was achieved using VLSI
Technology's custom design tools.

An event-driven simulator was designed, also in BASIC, which
allowed the support chips, the video controller VIDC and memory con­
troller MEMC (which both had slightly more complex timing require­
ments), and the 1/ 0 controller IOC, to be designed and tested. A
development of this simulator, since rewritten in Modula-2 and then in C
and known as ASIM, is still used by both Acorn and ARM Ltd for design
and testing today.

The world's first commercial RISC processor

The first ARM processor, ARMl, yielded working silicon the first time it
was fabricated, in April 1985 at VLSI Technology. It bettered the stated
design goals while using fewer than 25 000 transistors. These samples
were fabricated using a 3 µm process.

There was a great deal of excitement at and confidence in the new
chip. The ARM was used internally at Acorn and by Acorn developers
when it was made available as a second processor add-on for the BBC
Micro; this device used the ARMl as an additional coprocessor and accel­
erator for the 6502-based BBC micro. In fact, this second processor was
used to improve the performance of the simulation tools the team had
designed to finish the support chips and also to develop the next ARM
processor.

The second processor add-on also enabled third-party developers to

6 The history of the ARM CPU

1.2.4

start working with the processor and contemplating the development of
software to exploit its advanced features. The purpose of releasing the
second processor was to ensure that when a complete ARM-based system
was released, potential users and developers had some experience of
ARM and were not deterred from developing application software for it
by the novelty of the technology and the lack of wide support for it in the
market.

Improving on ARM1

The experience of designing ARMl, and of programming the sample
chips, showed that there were some areas where the instruction set could
be improved in order to maximize the performance of systems based
around it. In particular, the Multiply and Multiply and Accumulate
instructions were added in order to improve performance by eliminating
the use of slow subroutines for this purpose. Without this addition, the
ARM could have been 'horribly slow' in some circumstances, according
to Furber.

This addition would facilitate real-time digital signal processing,
which was to be used to generate sounds, an important feature of home
and educational computers.

A coprocessor interface was also added to the ARM at this stage,
which would enable a floating point accelerator and other coprocessors to
be used with the ARM. Even after all these additions the ARM2 main­
tained its small die size and low transistor count; the die was 5.4 mm
square and the transistor count around 25 000. This second device was
also improved by being fabricated in a 2 µm process. That this was an
extraordinary achievement, and that the ARM is an unusual processor in
terms of size/performance, is shown more clearly in Figure 1.1 which
shows the relative die size of the ARM and other processors

The ARM in the market

The ARM arrived into a fast-changing world. By 1985 the computer mar­
ket looked very different from that of the early 1980s. Then the growth in
demand for cheap computers suitable for home use and self-education
seemed unlimited. There was room for innumerable start-up companies
to grab enough market share to survive, and users bought computers on
the basis of their claimed performance.

Now the leading names in the computer market were IBM, produc­
ers of clones of its personal computer, and Apple. Compatibility with
existing computers, and particularly the IBM standard, was of increasing
importance, as was the ability to run market-leading application pro­
grams, especially those aimed at the growing business market.

The development of the ARM chip at Acorn 7

ARM610 46mm2

AT&T Hobbit 73mm2

IDT R3081 126.1mm2

Intel 386SL 171 . 6mm2

Figure 1.1 Relative die sizes normalized to 0.8 µm process

Unlike Acorn, Apple had adopted an off-the-shelf 32-bit processor,
Motorola's 68000, and so it was able to bring a 32-bit computer, the Mac­
intosh, to the market in 1984, although it was some time before it gained
full acceptance by the business community. Apple too went through a
stage when its technical resources and designs were unsurpassed but not
translated into success in the marketplace.

Acorn's problems

Acorn had no replacement computer to offer customers who felt that the
BBC Micro and its derivatives were old technology and not as good as the
newer machines, which were more clearly aimed at the business market,
and much more highly specified than Acorn's models. A technical work­
station based on National Semiconductor's 32-bit 32016 was a market
flop, and the consumer boom in home computers had evaporated. Acorn
had launched a cut-down version of the BBC Micro to be sold into the
home market, but it came too late to capitalize on the boom, and Acorn
was left with large stocks of unsold machines.

A financial crisis enveloped Acorn, and led to it being taken over by
one of Europe's leading computer and office equipment manufacturers,
the Italian giant Olivetti Ing et Cie, which apparently bought up Acorn in
1985 for its share of the UK computer market, without knowing that its
research labs housed the first samples of a new family of RISC processors.

8 The history of the ARM CPU

Delays in bringing ARM-based systems to market

Although the ARM processor had been designed with the clear intention
that it was to power the next generation of Acorn personal computers,
and it was equally clear that such machines needed to be developed
quickly, the design and production of ARM-based systems by Acorn was
to be more fraught than the design of the chips themselves. It was to take
more than two years from the arrival of working ARM silicon to the
launch and shipment of a complete ARM-based system.

Deep within the advanced research and development labs in Cam­
bridge, and at the research lab that Acorn had established in Palo Alto,
California, Acorn staff were also designing an office automation system
using the ARM processor. This system was a long-term goal of Acorn's
co-founder, Dr Hermann Hauser.

A new operating system, known as ARX, was being developed to
run on the processor, but progress was slow and Roger Wilson has
described it as 'a black hole', at least as far as programming resource was
concerned. However, the need for Acorn to release a new product to reach
its existing market in education, small businesses and the home meant
that this project was abandoned and a home computer, the Archimedes,
was launched in 1987 as the first commercial product using the ARM, fea­
turing an 8 MHz version of the ARM2 and the three support chips
MEMC, VIDC and IOC, an input / output controller and a simple operat­
ing system.

Archimedes: the first ARM-based platform

The Archimedes received a somewhat lukewarm response on its launch.
At a time when personal computing appeared to be consolidating behind
the IBM PC standard, Acorn had introduced a computer with a new pro­
cessor, a new operating system, and no base of software to provide users
with the applications they needed. Many critics decried the use of RISC
technology as a particular failing of the machine, arguing that this com­
mercially unproven technology made any machine based upon it too eso­
teric for use in schools and businesses.

To answer some of these criticisms, software emulators were
launched with the machine, which allowed Archimedes users to run most
PC and BBC Micro software, but it took two or three years for a credible
amount of application software native to the ARM and Archimedes to be
developed.

Since then Acorn has refined and improved its computer models
and confirmed its position as a leader in the British home computer and
educational computing market. A wide range of software is available to
these users, most of it developed by small companies loyal to Acorn since
the early 1980s, and including applications intended for home, business
and education use. Because of Acorn's dominant position in the UK edu-

1.2.5

The development of the ARM chip at Acorn 9

cational computing market, the range of programs suitable for use in the
classroom is probably at least as large as that for any other computer.

Further work on the ARM

The launch of the Archimedes did not signal the end of development of
the ARM and its support chips. Acorn continued to support its research
and development team in creating improved versions of the chips, offer­
ing greater performance.

The purpose of designing the original ARM chips, ARMl and
ARM2, had been to develop a processor capable of offering better-than­
acceptable performance in low-cost personal computers. The next step
was to expand the design so that it offered the kind of performance
expected of a high-end personal computer, or workstation. Intel- and
Motorola-based personal computers were already offering performance
which perceptibly outstripped that of ARM-based systems.

Acorn's partner in building the chip, VLSI Technology Inc., was to
develop further markets for the ARM processor and its support chips,
while Acorn continued to develop personal computers based on the chip.

The development of ARM3

To improve the performance of the ARM a 4 kbyte on-chip data and
instruction cache was added. This, along with the denser fabrication of
the chip using a 1.5 µm process, would allow the new device, dubbed
ARM3, to run at a much higher clock rate than its predecessors, thus
improving overall performance while using the same support chips and
low-cost memory as the ARM2.

The inclusion of the cache and its control circuitry led to a much
higher transistor count of around 300 000, but this was still a highly com­
pact device; so much so that problems occurred trying to find an IC pack­
age capable of accommodating the tiny ARM3 die.

In 1989 the ARM3 was launched at the significantly increased clock
rate of 25 MHz. Acorn's desktop computers using this chip were first
launched in 1990, although third parties were selling ARM3 chips on
upgrade boards for ARM2-based computers in 1989. The first of these
was Aleph One Ltd, a small company based in Bottisham, the next village
to ARM Ltd's current home.

VLSI Technology Inc. was having some success in convincing other
companies to use the ARM, particularly as an embedded processor. Some
companies incorporated ARM into their products; others took samples of
the chip to use in their research. One of these was Apple.

10 The history of the ARM CPU

1.3

1.3.1

ARM becomes the Advanced RISC Machine

By 1990 it was clear that although Acorn's financial position had stabi­
lized, an in-house processor design team was an expensive luxury for a
small company to support. The ARM development team had now pro­
duced a static version of the processor, the ARM2aS, making it even more
attractive to potential third-party customers. This new variant added low
power consumption to the list of features which made the ARM attractive
to developers interested in designing low-cost portable and hand-held
devices and electronic personal organizers. It was intended for inclusion
in a hand-held personal electronic organizer and communications device,
which although developed as far as working prototypes was never actu­
ally marketed (the Active Book) .

Interest in the ARM family was growing as more designers became
interested in RISC, and the ARM's design was seen to match a definite
need for high-performance, low power consumption, low-cost RISC pro­
cessors. In conditions of greatest secrecy an agreement was reached
between Acorn, VLSI Technology Inc. and a company which had
expressed an interest in the ARM for some time now, Apple.

The foundation of ARM Ltd

A new company was set up with Apple, Acorn and VLSI Technology as
founding partners. The Acorn RISC Machine became the Advanced RISC
Machine and Advanced RISC Machines Ltd was born. Many of the origi­
nal designers moved from Acorn to join the new company, with others
working in an advisory role. Additional expertise was provided by Apple
and new blood was recruited from around the world.

The ARM development team moved out of the building they had
long occupied at Acorn's Cambridge headquarters. Newly appointed
managing director Robin Saxby, former MD of European Silicon Struc­
tures (usually referred to as ES2), chose a converted 18th century barn in
the picturesque Fenland village of Swaffham Bulbeck, ten miles outside
Cambridge, as ARM's new home.

ARM Ltd was founded with a clear mission to continue the devel­
opment of the ARM processor and to facilitate its use by system develop­
ers, whether as a standalone processor or as a macrocell with custom
logic or other ARM components added to it to make a custom chip.

ARM Ltd was also to license its designs to chip foundries who
would sell the chips, giving ARM Ltd a royalty, rather than establish its
own fabrication facilities. VLSI Technology, which had built all previous
ARM chips as well as custom logic devices for both Apple and Acorn,

1.3.2

ARM becomes the Advanced RISC Machine 11

was the first licensee.

ARM's chip numbering system

ARM Ltd adopted a new numbering scheme for its devices. Previously
the chips had simply had a single number suffix to denote which genera­
tion the design was, such as ARM2 or MEMCl. In the new scheme, a sin­
gle number is used to represent the processor core macrocell which is the
main component of the processor, for example ARM6. This is incre­
mented by 1 from generation to generation, so the next ARM processor
core will be ARM7, and so on.

A two-digit number denotes a self-contained chip consisting solely
of this device and the minimum necessary interface and test circuitry, for
example ARM60 and VIDC20. A three-digit number denotes a device
which integrates the processor macrocell with other standard ARM
macrocells and/ or custom logic, for example ARM250 and ARM610.

Development of ARM6

ARM Ltd's first development was the next step from the ARM3 processor,
which was named ARM6 and included full 32-bit addressing and ended­
ness (byte sex) support, one of many changes requested by Apple in order
to use the ARM in planned products. An improved video controller,
VIDC20, was also developed and a floating point processor was also
introduced.

ARM Ltd's first major commission was to design a CPU for Apple
suitable for use within a hand-held personal organizer device. This
device became known as ARM600, from which the ARM610 used in New­
ton was later derived. At the same time ARM Ltd's software team devel­
oped the ARM Cross Development Toolkit, a suite of software which
allowed designers working on a range of platforms to use ARM develop­
ment tools, assemblers, compilers, and debugging and emulation pro­
grams.

Hardware evaluation kits were also produced to enable designers to
test the ARM6 processor and to begin to develop operating system and
support software for use with their own designs before the availability of
finished systems. ARM Ltd developed the PIE (Platform Independent
Evaluation) Card, which allowed system designers to test their ideas on
an ARM card attached to a host machine running the Cross Development
Toolkit.

12 The history of the ARM CPU

1.3.3

1.3.4

ARM Ltd creates an identity

A further task for ARM Ltd staff was the establishment of an identity and
higher profile for the company and its processors. While the ARM was
exclusively Acorn's it was little publicized; magazine articles on RISC
processors rarely referred to it, although its sales were in the same league
as successful processors such as SPARC and Clipper. Speculation about
Apple's interest in ARM Ltd and potential ARM products proved to gen­
erate plenty of interest in both the company and the processors, with con­
sequent effects on Acorn's share price, which rose more than ten-fold
from early 1992 to early 1993.

ARM Ltd has taken steps to raise its profile within the merchant
microprocessor market, with staff making regular presentations at confer­
ences worldwide. A new visual image was adopted (Figure 1.2), with the
'ARM-powered' label to be attached to any systems using ARM proces­
sors (Figure 1.3).

ARM develops its markets

The availability of the ARM and foundation of ARM Ltd coincided with a
growing potential for its products. While the late 1980s saw the computer
market focused tightly on standardized solutions for business users,
mostly in the form of IBM PC-compatible hardware, in the early 1990s the
increasing saturation of this market combined with the worldwide reces­
sion have led computer developers to look for new markets and new
types of products to sell.

Advanced RISC Machines

Figure 1.2 The ARM Ltd logo adopted in 1991

ARM becomes the Advanced RISC Machine 13

Cl
LI.J
cc
LU

$
0
C..

ARM.
Figure 1.3 The ARM-powered logo

TM

The standards of the 1980s are now themselves starting to look like
old technology, and the quest for a new generation of information and lei­
sure technology products has provided immense opportunities for com­
panies like ARM Ltd with timely products.

Leisure and consumer computing

Two types of computer product are believed to have the best chances in
this changing market. Many developers have discussed or announced
perso~information organizers, offering a range of functions to users
who would not necessarily have considered using a laptop or desktop
computer. Apple's proposed range of Newton personal digital assistants,
powered by the ARM, are contenders in this market. The first Newton
device, the MessagePad, was launched in summer 1993. Leisure technol­
ogy is the other growth market, full of companies exploiting the public's
demand for escapist entertainment and attempting to emulate the success
of Nintendo and Sega, and to use CD-based formats as a means of distrib­
uting interactive entertainment.

Late in 1992 a new venture, The 3DO Company, announced that it
too had designed the ARM (in this case, ARM60) into its product, a CD­
ROM based leisure computing box to be known as the Interactive Multi­
player. 3DO and its licensees plan to ship products, both hardware and
software, during 1993. A wide range of leisure and commercial software
developers signed up to work with the 3DO format, offering it a good
chance of success in a market dependent on both the delivery of technol-

14 The history of the ARM CPU

1.3.5

ogy and the availability of attractive software. 3DO did not plan to manu­
facture ARM-based hardware itself, but to encourage its hardware
licensees to produce a range of products conforming to the standards it
defined. Among its licensees are Japanese electronics giant Matsushita.

Both these product types, electronic personal organizers and leisure
computing devices, require powerful processors at a cost low enough that
the end-product is still competitively priced for a consumer market.
Hand-held portable organizers require this computing power to be deliv­
ered in a compact form and without heavy power consumption, so that
the unit can be small and run from batteries. ARM Ltd's processors are
ideal for this and the growth of this market represents a major opportu­
nity for ARM and its customers.

Embedded control

Embedded control forms a large part of the market for microprocessors.
The low-cost, high-performance ARM has always been targeted at this
market by its original partner, VLSI Technology.

The embedded controller market has traditionally focused on 8-bit
microprocessors, but the growing complexity of many control require­
ments in sophisticated products indicates a need to move to more power­
ful processors. The ARM and its variants offer manufacturers the
opportunity to move directly to 32-bit controllers at low cost and with a
great deal of flexibility for designing custom controllers.

Potential applications for custom embedded controllers using ARM
macrocells include real-time controllers in the automotive market. Poten­
tial applications include engine management systems and entertainment
systems controllers.

The ARM has had previous successes as an embedded controller.
Cambridge (England) robotics company Microrobotics has used various
ARM devices as the basis of its microcontroller system used for applica­
tions as diverse as controlling animatronics puppets and complex event
lighting systems. British company Rediffusion Simulation uses the ARM
in its Commander flight simulator.

Other companies around the world are planning to use the ARM as
a controller for arcade computer games, high-speed data communica­
tions, videophones, fuzzy logic controllers, and data-logging and test
equipment.

Establishing a global presence

As the market for low-cost, low power consumption, high-performance
processors expands, ARM Ltd is expanding its global presence by devel­
oping relationships with more companies around the world. Since the

1.4

ARM design objectives 15

launch, ARM has developed relationships with more foundries who will
license its designs and sell them into different markets.

From its earliest days within Acorn, ARM Ltd has worked closely
with VLSI Technology, Inc., its first partner and the first manufacturer of
ARM devices.

In the UK, GEC Plessey Semiconductors was signed as an ARM
foundry and partner in January 1992. Plessey now produces a range of
ARM standard parts. It is also the foundry for the ARM250, a custom
processor developed for Acorn out of standard macrocells and a small
amount of custom circuitry.

Establishing a relationship with a major Japanese manufacturer was
a key component of ARM's strategy, and this was achieved in March 1993
when the Sharp Corporation of Japan signed a deal to manufacture and
market ARM processors and associated products. Sharp already has a
relationship with Apple which is expected to result in products based on
Apple's Newton technology, to which Sharp is contributing.

At around the same time ARM Ltd strengthened its claim to be a
truly global company by receiving a significant investment from Japanese
investment house NIP. ARM Ltd's investors now include European com­
panies, in the form of Acorn (and through it Olivetti), US companies
Apple and VLSI Technology, and NIP in Japan.

Shortly after these agreements were signed, Texas Instruments was
added to the list of ARM partners, with the intention of using ARM
macrocells as the basis of custom embedded controllers.

ARM Ltd now has offices in California and Japan in order to main­
tain a close relationship with licensees and their major customers, and to
promote existing ARM devices and the company's ability to produce new
ones to future customers. It is likely that ARM will continue to establish
relationships with new partners around tw world.

ARM design objectives

The original objective of the ARM design team was to produce a proces­
sor which provided a logical advance from the 6502 processor, and was
suitable for use as the central processor of a business or home computer.
It was not intended to produce the most powerful processor on the mar­
ket, but to produce a processor which harnessed the latest techniques to
provide computing power at a price which meant that it could be
included in a low-cost personal computer system.

As the market for ARM devices has grown and the requirements of
potential customers have developed and become more sharply defined,

16 The history of the ARM CPU

1.4.1

1.4.2

so too have ARM Ltd's design objectives. The ability to develop custom
processors and controllers quickly from its library of standard macrocells
has always been there, but this is now being formalized in the Quick­
Design system, which was launched at the COMDEX exhibition in
November 1992. As the name implies, the purpose of QuickDesign is to
create a custom part from standard parts as quickly as possible, and to
show how these can be interfaced with custom technology developed by
ARM Ltd or the customer working in partnership to produce a timely
and low-cost product.

ARM Ltd's design objectives are now clearly stated as developing
processors which use RISC design principles to meet the following goals.

High performance for low price

The original ARMl device was intended to power an Acorn computer, a
personal computer rather than the workstations which other RISC proc­
essors such as the MIPS and the SPARC were designed for. Rather than
use the advantages of RISC to make a large chip, more powerful than its
CISC equivalent, the Acorn chip used RISC techniques to make a smaller
chip of equivalent power to those used in other personal computers.

The ARM processor has always differed from other commercially
available RISC processors in that it is intended to meet a price/perform­
ance ratio rather than to be the most powerful processor available.
Acorn's computers have always been aimed at the middle of the market,
so the processor designed to power them was too. ARM processors are
not the most powerful, but offer an extremely good price/performance
ratio compared to other processors, at about a dollar per million instruc­
tions per second (MIPS) in the case of ARM6.

Short design time

One of ARM Ltd's stated goals is to provide a quick and effective design
service to produce custom processors based on ARM macrocells. This has
been formalised as the QuickDesign process, which offers customers the
following benefits:

• A partnership approach to product development, ensuring that
products meet the customers' requirements.

• Access to ARM Ltd's library of macrocells, and design tools and
services.

• Help in designing any custom parts of the processor design,
bringing together ARM Ltd's design expertise with the customer's
own knowledge of the application and market being developed for.

1.4.3

1.4.4

ARM design objectives 17

Because of the simplicity and small size of ARM devices, custom
chips can be developed and fabricated to meet specific customer require­
ments, and resulting products can reach the market quickly. The ARM610
was developed from initial specification to the delivery of working silicon
in less than four months. Short development times are critical for custom
products intended to form part of systems entering a market which is
likely to be hotly contested from the start, such as that for hand-held com­
puter devices.

It also provides some measure of confidence that future develop­
ments of the ARM processor family will appear on schedule, so that sys­
tem designers need not worry that their new designs will be held up
while vital components are developed and debugged. ARM Ltd's own
mythology is that virtually all the chips they have designed have worked
first time; a row of champagne bottles, each opened to celebrate the
arrival of working silicon, lines the staircase at ARM Ltd's barn to bear
witness to this.

High performance for low power consumption

A further advantage of the small size of ARM devices is that they do not
consume as much power as other, larger processors.

This has proved a critical key to the success of ARM processors.
Unlike many other processor designs, the ARM was easily re-imple­
mented in static form rather than the usual dynamic CMOS. This, along
with the small die size, reduced power consumption, making ARM proc­
essors ideally suited for power consumption-critical products such as
portable computers. Furthermore, it allows the clock to be stopped, a use­
ful power saver in portable designs.

Easily customized designs

The above factors combine to make the ARM product range extremely
flexible. The small size of the ARM processor means that it can easily be
combined with its support chips, cache memory, or custom circuitry to
make self-contained custom chips. All ARM devices are designed as
macrocells, building blocks which can be combined within a single chip.

The ARM610, commissioned by Apple, is one example based on
macrocells, which includes the 32-bit ARM6 processor core, a 4 kbyte
cache, a write buffer and a memory management unit. Even with all these
additional components, the end result is a much smaller package than
familiar processors such as the 80386.

Acorn Computers has also enjoyed the fruits of commissioning a

18 The history of the ARM CPU

1.5

custom chip from ARM which effectively combined the original ARM2
four chip set on to a single device, the ARM250. This process was carried
out from the original concept to volume production in 12 months, result­
ing in a single device with a sixth of the footprint, one third the power
consumption and half the cost of the devices it replaced.

RISC versus CISC processor design

How does the adoption of RISC technology help ARM Ltd. to reach its
goals in the design and production of microprocessors, and what led
Acorn's design team to choose the RISC route in the early 1980s when it
was commercially unproven?

The term Reduced Instruction Set is applied to a great many proces­
sors and it is not obvious that at the extremes of the category they have
much more in common with each other than they do with CISC devices.
RISC techniques are often employed in extremely large and complex
devices such as the i860, where the size and complexity of the chip means
that advantages it gains from using RISC techniques are very different
from those gained by the ARM processor.

Why was the ARM from its inception designed as a reduced instruc­
tion set processor? At the time the first ARM chip was being designed,
RISC was a relatively new concept and CISC processors were still being
developed which offered growing performance.

RISC's advantages were originally propounded as being:

• Smaller die size, because a RISC chip is simpler and requires fewer
transistors to implement its smaller instruction set.

• Shorter design process; smaller chips and fewer instructions mean
the design will be less complicated, and hence will take less time to
complete and debug.

• Improved performance; smaller chips with shorter signal paths
mean that each instruction cycle is shorter and thus quicker.

As shown in this chapter, all three of these advantages of RISC
design have been apparent in the design history of the ARM processor.
Choosing to design a RISC chip meant that Acorn's designers could
design a small chip with few resources, and yet reasonably expect that it
would deliver the required performance within the available time-scale.

The 6502, to which Acorn's designers looked when designing the
original ARM, had a short and simple instruction set which lent itself well
to RISC. RISC was a sensible option for the design team to consider; all
three of the above points suggested it as a suitable choice when designing

1.6

Summary 19

the chip. The team's resources in terms of staff, time and development
tools were limited, and the requirement was for a processor which would
be cheap to make and sell but still offered sufficiently high performance
that computers based on it would perform as well as or better than com­
parable personal computers.

The advantages of RISC that have attracted further users to the
ARM chip set appear mainly to be its delivery of high performance for
low cost, in a compact package which takes up little space and consumes
little power. While processors fulfilling this set of requirements may have
been a small market niche a few years ago, it is now a highly competitive
and fast-growing area of the computer market, and ARM Ltd and its
processors are placed well to compete within it.

Summary

The ARM processor, unlike many other processors, was designed within
a single company to meet its particular requirements for product devel­
opment. RISC technology was adopted partly because of its perceived
technological benefits, partly because it seemed appropriate to the design
goals, and partly because it offered a way of producing a powerful pro­
cessor using limited resources.

While at its launch the ARM and systems based on it were seen as
being ahead of their time, the current vogue for all things RISC has led to
an increased interest in the ARM. This, combined with changing market
conditions influencing Acorn, led to the ARM design team being estab­
lished as ARM Ltd, with investment from other partners including Apple
Computer, and to the redesign of the ARM itself to exploit its benefits still
further.

From being a single design aimed at a particular project the ARM is
now a set of highly customizable processors and supporting macrocells
suitable for use in a wide range of applications but targeted at systems
requiring high performance from a compact device with low power con­
sumption.

2.1

2
The ARM6 CPU core
architecture

Introduction

This chapter describes the architecture of the ARM6 CPU core, the 32-bit
RISC processor macrocell upon which the current generation of ARM
processors is based. ARM6 is the first processor core to be developed by
ARM Ltd from the original Acorn RISC design; it has been modernized
and adapted to take account of the requirements of the global computer
market in the 1990s.

The ARM6 CPU differs significantly from the earlier Acorn design
in its adoption of a 32-bit program counter I address space and its ability
to operate on external data buses of either byte sex. Both of these changes
came about as a result of input from Apple Computer. At the same time
the CPU core was revised to use only 'static' logic as first introduced in
the ARM2aS, lowering the power consumption of the processor and
allowing it to operate at reduced clock frequencies for even greater power
savings.

From a programming perspective the ARM6 CPU core presents a
programming model which is simple and consistent. The small register
set and minimalist instructions combine to give very high program den­
sity (that is a low average number of bytes per instruction) while main­
taining a high degree of functionality.

21

22 The ARM6 CPU core architecture

2.2

2.2.1

The ARM6 data path

The ARM6 CPU has a 32-bit address bus, 32-bit internal data paths and a
single 32-bit external data interface through which both instructions and
data pass during program execution. This traditional design approach,
known as a 'von Neumann' architecture, imposes limits on the processor
performance but was adopted for the ARM due to its simplicity and low
cost of implementation (Furber, 1989).

As a result, instructions which load data from or store data to mem­
ory must take at least two clock cycles to execute (the first one for the
instruction, the second for the load or store itself). Although it is possible
to reduce instruction execution time by using separate instruction and
data paths (the so-called Harvard architecture) the ARM approach has the
counter-advantage that it allows multi-stage addressing operations such
as indexing or stack operations to be implemented without increasing the
complexity of the CPU. ARM6 exploits this valuable side-effect by pro­
viding many instruction formats which can exploit these addressing
styles.

Pipelining

To reduce the bottleneck at the data bus interface the ARM6 uses a multi­
stage 'pipeline' to allow many parts of the processor to operate concur­
rently and continuously under most circumstances (Figure 2.1). The
ARM6 arithmetic logic unit (ALU) itself is not pipelined because it
doesn't need to be: a single clock cycle can encompass a register read, a
shift on one operand, the ALU operation itself and writing the result back
to a register again.

However, the instruction fetch and decode units are pipelined in
three stages so that while the ALU is executing an instruction its succes­
sor is being decoded and the one after that is being fetched from memory.
This allows the ARM to complete an instruction every clock cycle under
most circumstances, that is when it doesn't have to perform a data mem­
ory access.

Data load and store operations take additional cycles to perform the
data transfer itself. Branches to new addresses take three cycles because
they break the pipeline (since instruction flow is not sequential) and it
must refill before the next instruction can be executed. To reduce the need
for branches the instruction set allows all instructions to execute condi­
tionally, since spending a single cycle not executing a conditional instruc­
tion is clearly quicker than a three-cycle pipeline refill.

The memory interface exploits pipelining by bringing internal sig-

2.2.2

fetch
data op decode execute

fetch calculate data
data store decode address transfer

The ARM6 data path 23

fetch
data op decode execute I

fetch
data op

Figure 2.1 ARM pipelining in action

decode I execute

fetch
data op decode execute

nals off-chip which 'look ahead' to forthcoming memory accesses and
allow the use of fast local access modes offered by standard dynamic
RAM. Again, the ability of every instruction to execute conditionally
increases the chance that the program address references will run sequen­
tially, thereby allowing the memory sub-system to make predictions
about the next address required.

ARM6 CPU core functional blocks

The major functional blocks within the ARM6 core, seen in Figure 2.2, are:

• The read and write data register blocks (bottom left and right)
• The instruction decoder and control logic (right-hand side)
• The multi-port register bank (centre top)
• The Booth's multiplier (centre)
• The barrel shifter (centre)
• The Arithmetic Logic Unit 'ALU' (centre bottom)
• The address register (top) and address incrementer (just below)

Three internal 32-bit data paths exist, each of them associated with
one of the register bank ports. The register bank has two read ports and
one write port. The PC has an extra read port and an extra write port ded­
icated to it. This arrangement allows the ARM to do many things in a sin­
gle execution cycle. The main internal buses are:

• The A bus (first instruction operand)
• The B bus (second instruction operand, read/write memory data)
• The ALU bus (ALU result)

24 The ARM6 CPU core architecture

These buses join the functional blocks together in a limited way: the
interconnections in turn impose restrictions on what can be achieved in
each processor clock cycle. Figure 2.2 shows the internal structure of the
ARM6 CPU core. In the following sections the purpose of each of its func­
tional blocks is examined in turn.

Read and write data registers

The read and write data registers hold instructions and data (data only in
the write register) immediately before and/ or after data transfers
between the CPU and other parts of the processor (for example cache
memory) or memory system.

Instructions are latched into the read data register during the 'fetch'
phase, passed on to the instruction pipeline (see Figure 2.1) during the
decode phase and then actually executed in the final phase of the three­
stage pipeline.

Data to be written off-chip comes from the register bank on the B­
bus and is latched in the write data register before being output. When a
byte is to be written the data output block replicates it four times across
the 32-bit width of the data bus so that external byte-wide memory may
be wired directly to the data bus and the 'not Byte/Word' (nB/W) signal
and address bits A[l..O] used to select which byte is to be written; Table
2.1 summarizes this.

Table 2.1 Address encoding for byte and word access (Little-endian)

Access nBW Al AO

Word access 1 x x

Least significant byte 0 0 0

Next least significant byte 0 0 1

Next least significant byte 0 1 0

Most significant byte 0 1 1

Instruction decoder and control logic

The instruction decoder and control logic block is responsible for manag­
ing the flow of instructions through the pipeline, their decoding and exe­
cution, the loading and storing of data to and from memory, receiving
interrupts and asserting the relevant control signals to indicate the state
of the CPU to the rest of the system.

Central to the instruction decoder is the 'instruction pipeline', which
holds the current instruction and any instructions already fetched that are

Address bus

(/)
::i
CD

&'.
ADDRESS
INCREMENTER

REGISTER BANK
(31 32-bit re9isters)
(6 status registers)

(/)
::i
CD
<(

BOOTH's
MULTIPLIER

32-BIT ALU

WRITE DATA REGISTER

Data bus

Figure 2.2 ARM6 block diagram

(/)
::i
CD
a:
w
f­z
w
:::;
w
a:
(.)

~

(/)
::i
CD
CD

The ARM6 data path 25

INSTRUCTION
DECODER
&CONTROL
LOGIC

Data bus

26 The ARM6 CPU core architecture

awaiting execution. ARM pre-fetches instructions into the pipeline in
order to allow the CPU to be kept busy on continuous data processing
instructions (that is when no data is being transferred on- and off-chip). A
three-instruction pipeline provides the space needed for this, to support
pre-fetching during the three-stage fetch/decode/execute process. When
a multi-cycle instruction is encountered (for example a memory transfer
or multiply) the pipeline must freeze and allow the next instruction to
pass on to the decode stage during the last cycle of the multi-cycle
instruction.

The control logic block has configuration inputs which determine
the address bus size (26 or 32 bit) for each of the program and data spaces
as well as the byte sex (little- or big-endian).

The register bank

The ARM6 CPU core has 31 general-purpose 32-bit registers and six sta­
tus registers (also nominally 32 bits wide, although only 11 bits are cur­
rently defined). All registers are located together in the register bank and
are served by three 32-bit buses for data transfers: two for reading oper­
ands (the A and B buses) and the third for returning the result (the ALU
bus).

The PC (register RlS) gets special treatment because of the need to
update it regularly as instructions are executed: it has five active ports,
the three noted above and a further read port for the PC bus and a write
port for the Incrementer bus.

Booth's multiplier

Two blocks of the CPU core add quite specialized functionality: the
Booth's multiplier assists in the implementation of the multiply (MUL)
and multiply-and-add (MLA) instructions; the barrel shifter allows
instruction operands to be shifted before they are used by the ALU. It is
worth noting that the multiplier is a very non-RISC functional block. Its
appearance lends testimony to the pressures of market forces on architec­
tural purity.

Booth's algorithm implements multiplication by the 'shift-and-add'
approach: for each bit which is set in one operand the other operand is
shifted by the relevant amount and summed into the result. When all bits
in the first operand have been processed in this way the result register
will have accumulated the result of the multiplication.

In the ARM6 core a 2-bit version of Booth's algorithm is used, that is
two bits of the first operand are considered at once, halving the maximum
time taken to complete the operation. The least significant bits are pro­
cessed first, working through to finish with the most significant bits. This
operation time is further decreased by 'early termination' which occurs
when no further bits are set in the first operand. The Booth's multiplier

The ARM6 data path 27

receives one of the operands for the multiplication from a register along
the A bus and outputs two bits of the operand at a time to the multiply
control logic. A third output indicates when all remaining bits of the oper­
and are zero, signalling early termination of the multiply operation.

Barrel shifter

A barrel shifter is a form of shift logic which can shift or rotate its input by
any number of bits to produce an output within a fixed period: that is the
degree of shifting has no impact on the time taken. The ARM6 CPU core
includes a 32-bit barrel shifter which also has associated logic to allow
values to be arithmetic shifted (that is to preserve the sign bit) or rotated
through the carry bit (to give a 33-bit shift register). In ARM processors
the use of a shifted operand never increases the time taken to execute an
instruction, a fact which can be exploited very effectively by compilers to
execute small constant integer multiplications and divisions.

Arithmetic Logic Unit

The ALU performs all arithmetic, logical and comparison operations on
two input operands, often the contents of two registers in the register
bank. It consists of 32 duplicate 'bit slices', that is the logic for a single bit
of the ALU, along with carry generation circuitry. All operations are per­
formed on the full 32-bit width of the input data: Figure 2.3 shows a sin­
gle bit slice of the ALU logic from the earlier ARM2 core.

shifter
output

A bus

function
select 5

latch
controls

function select

0 1 2 3 4

carry
look ahead logic

Figure 2.3 ARM ALU logic for one bit (after Furber, 1989)

It is interesting to note in passing that the ALU does not actually
implement a subtract function; instead it always adds the two operands
but may invert one first to achieve a subtraction.

28 The ARM6 CPU core architecture

2.3

2.3.1

2.3.2

Address register and address incrementer

The address register and its associated incrementer are used to select the
address to be used for the next memory access cycle. There are four possi­
ble sources of the address: the current PC value, the output of the ALU
(for example for loads and stores), an address from the output of the
incrementer or an exception address generated by the control logic.
Whichever of these sources is selected the resulting address is then
latched in a register under external control of the 'address latch enable'
(ALE) signal.

The address incrementer output is the most common source of
addresses: it simply generates a new address which is four bytes (one
word) greater than the previous one. Whenever this occurs the incre­
mented value is copied back into the program counter (RlS) every cycle
to ensure that the register value is kept up to date.

The ARM6 programming model

Introduction

The CPU can directly manipulate two data types: Bytes (8 bits) and
Words (32 bits); words are aligned on four-byte boundaries where the two
least significant address bits are both zero. All ARM6 instructions occupy
exactly one word, and internal data operations are performed only on
word quantities. Both byte and word data types may be loaded from and
stored to memory

ARM CPU registers

The ARM6 CPU core has a total of 37 registers, comprising 31 general­
purpose 32-bit registers and 6 status registers (Figure 2.4). At any time 16
general-purpose registers and one or two status registers are accessible to
the programmer, the remaining registers being switched in by the CPU as
required. Exactly which registers are visible depends on the processor
mode. ARM6 supports six CPU 'modes' which reflect the privilege level
and facilities available to the program under execution. The modes are as
follows:

• User mode (normal program execution)
• FIQ mode (entered in response to a Fast Interrupt reQuest)

The ARM6 programming model 29

• IRQ mode (entered in response to an Interrupt ReQuest)
• Supervisor mode (a privileged and protected mode for the

operating system)
• Abort mode (entered after a data or instruction prefetch abort)
• Undefined mode (entered when an undefined instruction is

executed)

Mode changes may be brought about under program control, as a
result of an external interrupt, or as a result of a processing exception (for
example Abort/Undefined). Most programs are expected to execute in
User mode, with excursions into the other modes as interrupts and oper­
ating system calls dictate.

In any CPU mode 16 registers are directly accessible by the pro­
grammer (see Figure 2.4). All except RlS are general purpose and may be
used to hold data or address values. Register RlS stores the Program
Counter (PC) which points to the next instruction to be executed in mem­
ory. Since ARM instructions are word-aligned, the PC contains zeros in its
bottom two bits and a word address in bits [31:2]. Because the program
counter is accessible to programmers, it can be included in standard
instructions, and as a base for load and store instructions. This permits
the easy generation of position-independent code, an important benefit
for many modem operating systems where dynamic or run-time linking
is available.

A further register, the Current Program Status Register (CPSR) is
also accessible to programmers in all modes. This register stores the con­
dition code flags and the CPU mode bits. Several further Stored Program
Status Registers (SPSRs) exist for each of the non-User modes; the CPSR
is saved into the relevant SPSR whenever a mode change occurs.

General-purpose register R14 is hard-wired within the CPU to act as
a link register (LR) used to save the PC when a Branch and Link instruc­
tion is executed. It can be treated as a general-purpose register at all other
times.

By convention, but not hard-wiring, register R13 is used as the Stack
Pointer (SP) during program execution. Although this is not mandatory,
special facilities exists to support this technique (see below).

For each of the non-User CPU modes either three or eight further
registers are switched in when a mode change occurs, to obviate the need
to save registers to memory (see Table 2,2). In FIQ (Fast Interrupt) mode
registers R8_fiq through R14_fiq and SPSR_fiq are switched in; in other
modes registers Rl3_mode, Rl4_mode and SPSR_mode are available.

In a RISC CPU such as ARM the overhead associated with saving
the critical CPU context state (PC, flags, stack pointer) to memory is large
enough for these switched register banks to give significant performance
improvements.

The extra-large set of registers in FIQ mode allows the interrupt

30 The ARM6 CPU core architecture

General registers and program counter
User32
mode

FIQ32
mode

Supervisor32
mode

Abort32
mode

IRQ32
mode

Undefined32
mode

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

RS RS_fiq RS RS RS RS

R9 R9_fiq R9 R9 R9 R9

R10 R10_fiq R10 R10 R10 R10

R11 R11 _fiq R11 R11 R11 R11

R12 R12_fiq R12 R12 R12 R12

R13 R13_fiq R13_svc R13_abt R13_irq R13_undef

R14 R14_fiq R14_svc R14_abt R14_irq R14_undef

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

Program status registers

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq $PSR_unde1

Figure 2.4 Register organization

service routine to operate directly from private registers, usually without
the need to save any state at all. In other CPU modes the link register LK
and stack pointer SP (Rl3) are shadowed by banked registers to minimize
the amount of context which must be saved. If registers RO through R12
are required by Supervisor, IRQ, Abort or Undefined mode programs
then their current contents should be saved on the stack and restored on
return to User mode.

2.3.3

The ARM6 programming model 31

Table 2.2 The CPU mode bits

M[4:0] Mode Accessible register set

10000 usr_32 PC,Rl4 .. RO CPSR

10001 fiq_32 PC, R14_fiq .. R8_fiq,R7 .. RO CPSR, SPSR_fiq

10010 irq_32 PC, R14_irq .. R13_irq, Rl2 .. RO CPSR, SPSR_irq

10011 svc_32 PC, R14_svc .. R13_svc, Rl2 .. RO CPSR, SPSR_svc

10111 abt_32 PC, R14_abt..R13_abt, R12 .. RO CPSR, SPSR_abt

11011 und_32 PC, R14_und .. R13_und, Rl2 .. RO CPSR,SPSR_und

Program Status Registers

The format of the Program Status Registers is shown in Figure 2.5.
The N, Z, C and V bits are the condition code flags, which may be

changed as a result of arithmetic, logical and comparison operations in
the CPU and which may be tested by all instructions to determine
whether execution is to take place.

The I and F bits are interrupt disable bits, disabling IRQ and FIQ
interrupts respectively when set.

The M4 .. MO bits are the CPU mode bits which determine (when
written) and indicate (when read) the mode in which the CPU operates.
Not all combinations of these bits are meaningful: see Table 2.2 for more
information.

flags

31 30 29 28 27

Overflow

Carry/Borrow/Extend

Zero

~----- Negative/Less than

control

7 6 5 4 3 2 0

I
1

L Mo~e bits

FIQ disable

'------------ IRQ disable

Figure 2.5 Format of the program status registers {PSRs)

32 The ARM6 CPU core architecture

2.3.4 CPU modes and exception handling

Normal program execution takes place in the ARM CPU's User mode. In
User mode programs operate within the confines bf the system memory
management strategy and are prevented from executing privileged
instructions and from altering the processor mode bits in the PSR. When
the normal flow of the program is broken by an exception, perhaps
because of a memory management fault or an external interrupt, the CPU
mode changes according to the type of exception, and the PC is forced to
a new value. The new PC value is read from a table of 'exception vectors'
stored at fixed addresses in memory, causing a branch to an exception
handling routine whose address has been initialized there by the operat­
ing system.

Interrupts cause a change to the relevant interrupt mode (IRQ or
FIQ). The Software Interrupt (SWI) instruction causes a change to Super­
visor mode. Memory management exceptions cause a change to Abort
mode and undefined instructions cause a change to Undefined mode.

When any kind of exception occurs the CPU state prior to handling
the exception must be preserved, so that the original program can be
resumed when exception handling is completed. The ARM CPU uses the
banked registers to hold the previous CPU state and provide fresh regis­
ters for the exception handler. The previous contents of the PC and CPSR
are copied into the appropriate R14 and SPSR and the PC and mode bits
in the CPSR are then forced to the relevant value. The interrupt disable
flags are automatically set where required to prevent recursive nesting of
exceptions.

Several exceptions can occur at the same time, so exceptions are
assigned priorities and serviced in a fixed order according to priority. The
exception priorities are:

• Reset (highest priority)
• Data abort
• FIQ
• IRQ
• Instruction prefetch abort
• Undefined instruction, SWI instruction (lowest priority)

The highest priority form of exception occurs when the CPU Reset
pin is asserted, restarting the processor and terminating the current pro­
gram. A data abort occurs when the processor attempts to read or write
data from/to a memory location which is protected by the memory man­
agement unit; the instruction prefetch abort occurs when an instruction
fetch refers to a protected address.

Exceptions are discussed in more detail in Chapter 5.

2.3.5

The ARM6 programming model 33

Instruction execution and timing

Execution of instructions within the ARM6 core results in memory access
cycles which fall into one of four categories:

• Non-sequential cycle (N cycle). The CPU is requesting a transfer at
an address which in unrelated to the address used in the previous
cycle.

• Sequential cycle (S cycle). The CPU is requesting a transfer at an
address which is either the same as or one word greater than the
address used in the previous cycle.

• Internal cycle (I cycle). The CPU is performing an internal operation
and no memory transfer is required.

• Coprocessor cycle (C cycle). The CPU wishes to use the data bus to
communicate with a coprocessor and no memory transfer is
required.

The CPU core generates a pair of signals, known as nMREQ and
SEQ, which encode the current cycle as in Table 2.3.

Table 2.3 CPU cycle encoding

nMREQ SEQ Cycle type

0 0 Non-sequential (N)

0 1 Sequential (S)/ Active (A)

1 0 Internal (!) / Latent (L)

1 1 Coprocessor (C)

The exact duration of each type of cycle is determined by the mem­
ory system logic used in each implementation. The ARM2, ARM6 and
ARM60 processors output the signals shown above directly; the ARM3
ARM600 and ARM610, on the other hand, only ever perform Sor I cycles
to the memory system because of their caches, and these cycles are
known as Active (A) and Latent (L) respectively on these processors.

Because of the pipelining employed in the ARM's control logic
instruction execution overlaps considerably. Typically, one instruction is
using the internal data paths while the next instruction is decoded and
the one after that is being fetched. Instructions that are not executed take
one sequential cycle; those that are executed take various numbers of
cycles (summarized in Table 2.4, below) expressed in terms of the N, S, I
and C cycles described above. The elapsed time in cycles may therefore

34 The ARM6 CPU core architecture

be calculated if care is taken to consider pipelining.

Table 2.4 ARM instruction speeds

Instruction Cycle count Additional

Data processing lS + 1 S for shift by register
(ALU operations) +1S+1 N if R15 updated

MSR, MRS lS

LDR lS+lN+ll + 1 S + 1 N if R15 updated

STR 2N

LDM nS+lN+ll + 1 S + 1 N if R15 updated

STM (n-l)S+2N

SWP 1S+2N+ll

B,BL 2S+ 1 N

SWI, trap 2S+l N

MUL,MLA 1 S +ml

CDP lS+bI

LDC,STC (n-l)S+2N+bl

MRC lS+bI+lC

MCR lS+(b+l)I+lC

Table 2.4 expresses the instruction cycle timings in terms of the four
cycle types. In the table the following abbreviations are used to represent
various important parameters: I

• n is the number of words transferred
• m is the number of cycles required by the multiplier
• b is the number of cycles spent busy-waiting for the coprocessor,

and is determined by the coprocessor itself

These timing figures can only be converted into 'real' time when the
speed of the host memory system for each of the N and S cycles is known
-these parameters vary from design to design. This process is discussed
in more detail in Chapter 6.

2.4

Summary 35

Summary

The ARM6 CPU core is a 32-bit processor with 32-bit data and address
buses. It includes 31 general-purpose registers and six status registers.
Sixteen general-purpose registers are accessible to the programmer at any
time, the remainder being switched in and out of visibility according to
the current processor mode. There are six 32-bit CPU modes, of which
User mode is intended for normal program execution but others are
selected following hardware and software interrupts and memory man­
agement aborts.

Pipelining is employed to speed the execution of instructions. Three
stages of pipelining: fetch, decode and execute are employed. Because
branches break the pipeline it is usual to employ the ARM's conditional
execution facility instead wherever possible.

Some parts of the CPU core are devoted to specialized functions.
The barrel shifter performs shifts and rotations, and the Booth's multi­
plier assists in multiplication instructions along with the arithmetic logic
unit (ALU).

The length of time instructions take to execute is determined by the
type of instruction and the number of component memory or coprocessor
accesses involved. Four distinct types of cycle are identified by the core
for consideration by the memory subsystem. Integrated processors with
on-chip caches present only a subset of these cycle types off-chip.

3.1

3
The ARM development
environment

Introduction

RISC processors are particularly dependent on their support software.
Good high-level language compilers and/ or experienced assembly lan­
guage programmers are needed to make the most of the economies pro­
vided by a RISC system. It is no use having a concise instruction set if
compilers do not produce optimized, high-density output.

ARM Ltd has developed a set of tools to enable system designers
and developers to write and test software for ARM-based systems, and
also to provide a guideline to the performance of these systems before the
hardware is available. These tools are usually supplied to developers in
the form of the ARM Software Development Toolkit. This chapter pro­
vides an overview of the contents of the ARM Software Development
Toolkit and how they can be used.

Issues affecting all components of the toolkit are discussed first, fol­
lowed by a look at each component in turn, discussing its uses and the
facilities it provides.

Many examples of ARM Assembler code and ARM C are given
throughout the later chapters of this book. This chapter aims to introduce
the Assembler and C compiler in sufficient detail that the reader is able to
understand the examples and also to enter them, and assemble or com­
pile them.

37

38 The ARM development environment

3.2

3.2.1

ARM Software Development Toolkit (SOT)

The ARM Software Development Toolkit (SDT) is available for a number
of commonly used operating systems, including DOS and variants of
Unix; a version of the Toolkit is also available for the Apple Macintosh.
The Toolkit is supplied by ARM Ltd's foundry partners as part of their
support for their customers, but is developed and maintained by ARM
Ltd.

The Toolkit consists of several components:

• the Assembler: armasm
• the C compiler: armcc
• the Linker: arml ink
• and the Debugger: armsd

Each of these tools is discussed extensively in this chapter. For a full
technical specification of these programs and standards the reader should
refer to the ARM Software Development Toolkit documentation.

Toolkit configuration

The ARM6 CPU cores support several different configurations of pro­
gram counter size, data address space size, byte sex and cache, write
buffer and memory management hardware. The Toolkit supports all pos­
sible combinations of these configurations, although programmers need
to ensure that the target system hardware is also correctly set up for the
configuration they intend to use. Programmers using the Toolkit will find
that they need to customize some parts of the toolkit, such as the C librar­
ies, so that they can be used on their particular ARM platform.

Some possible CPU configurations cannot be mixed, such as pro­
grams compiled to use hardware memory management with those com­
piled not to. The ARM Linker will either refuse to link or warn against
impossible combinations.

Address space support

Current ARM processors (ARM6 and variants) support either 32-bit or 26-
bit program and data address spaces. Earlier versions (ARM2, ARM3 and
variants) support only 26-bit address spaces; it is possible that future
ARM variants will not support 26-bit address spaces. The Toolkit sup­
ports 32-bit modes by default but can be requested to produce 26-bit code
if this is required by the target processor. To do this, it is necessary to
ensure that the correct C library and ARM emulation tools are installed;
consult the Toolkit documentation for further details.

3.2.2

3.2.3

3.2.4

ARM Software Development Toolkit (SOT) 39

Byte sex/endianness support

ARM processors from ARM6 onwards can be configured to have either
big-endian or little-endian byte sex. The Toolkit is shipped supporting the
byte sex of its host system, so versions for SunOS are preconfigured to be
big-endian, and versions for DOS are preconfigured to be little-endian.
Again, this can be altered using the config utility supplied with the
toolkit, and again it is necessary to install the correct libraries and emula­
tion tools for the combination of program counter mode and byte sex
required.

Memory management support

Some ARM processors (for example ARM600 I 610) include memory man­
agement hardware which, when initialized and enabled by the operating
system, obviates the need for software protection such as stack-limit
checking on function entry. All the ARM tools are configured to assume
software stack-limit checking, but the conf ig tool can be used to remove
this from the C compiler and Assembler. The ARM library, ARMulator
and symbolic debugger all have to be rebuilt to support the chosen hard­
ware memory management module .

Using the Toolkit components together

The elements of the Toolkit are designed to work together. For example,
programmers may prefer to generate some parts of a project in C and
some in assembly language. All object code, however it was created, must
be passed through the ARM Linker before it can be used as run-time exe­
cutable code.

A single project might pass through all the parts of the Toolkit. It
could start by being programmed in C to prove the general principles.
The ARM C compiler would then be used to compile the C source into
assembly language. This could then be hand-tuned for optimum per­
formance, using the ARM Symbolic Debugger. If the program needed to
be tested on actual ARM hardware, a device such as the Platform Inde­
pendent Evaluation (PIE) card could be used, as a slot card in an IBM PC­
compatible or via a serial link. Finally, the Linker would be used to link
the finished code and produce run-time object code.

40 The ARM development environment

3.3

3.3.1

The ARM Assembler

For programmers wishing to produce code of the highest possible den­
sity, written to work with the processor as closely as possible for maxi­
mum performance, there is no substitute for the Assembler. Writing ARM
Assembler requires some skill to achieve efficient results, but is simpler
than other RISC processor assemblers. However, hand-writing assembly
language makes it possible to produce extremely dense code which
exploits ARM-specific hardware features such as conditional execution of
instructions or the barrel shifter.

The ARM Assembler armasm is a key component of the Software
Development Toolkit. It simplifies the development of software which
needs to be closely fitted to ARM processor hardware and allows hand
optimization to achieve the maximum performance in speed- or through­
put-critical applications.

Format and organization of ARM assembly language

The instructions and directives that are understood by the ARM Assem­
bler are listed in Appendices A to C. The CPU instructions summarized in
the appendices are the subject of the next chapter.

Lines of input to the ARM Assembler generally take the following
form:

label instruction ; comment

The significant issue is that each of the three components must be sepa­
rated by at least one white space character (eg space, tab). Empty lines are
allowed and ignored by the Assembler.

The program listings throughout this book are presented as an
example of good practice in laying out and organizing assembly language
so that it is easy to read and maintain. Ideally, Assembler input should be
laid out in three columns separated by tabs, so that routine labels, instruc­
tions and comments are all easily identifiable at a glance.

Labels

Labels are tags given to sections of code to allow the address of the label
to be referred to by the program. The Assembler is case-sensitive, so pro­
grammers should take care to ensure that label and macro names are used
with consistent capitalization to avoid errors.

If a label is used it must appear at the start of the line; if no label is
used the line must begin with a space or a tab. Labels are treated as sym­
bols (see below) and obey similar rules; they must start with an upper- or

The ARM Assembler 41

lower-case letter or an underscore character, and should ideally not use
the same name as instruction mnemonics or directives to avoid confu­
sion. Labels generated by the Assembler are given names beginning with
an underscore.

Local labels

The Assembler supports a 'local label' facility, allowing sub-labels within
a parent label; a local label is simply a two-digit number that is 00 .. 99.
Local labels are useful when many labels or macro-generated labels are
required, since they may be redefined several times; the Assembler uses
the definition closest to the point of refernce. Local label areas are
declared using the 'routine' directive ROUT in the following way:

MyRoutine ROUT define start of routine

01 local label 01

02 local label 02

BNE %01 reference to label 01

Local labels are distinguished by their initial two-digit number, which
may optionally be followed by the parent label name, for example
06MyRoutine.

References to local labels must begin with the per cent character %,
optionally followed by B or F to tell the assembler to search backwards or
forwards for the label, and A or T to look at all macro levels or only this one
for the label. If there is no B or F, searching occurs in all directions. If there
is no A or T, searching occurs at this macro level and all levels closer to
the original source than this one, but not at more deeply nested macro
levels.

The letters refer to the local label, not to the parent routine label. For
example, in the following:

MyRoutine ROUT

B %01MyRoutine

OlMyRoutine

%F01MyRoutine would work in place of %01MyRoutine, but %B01My ­
Routine wouldn't.

So a reference to a local label might look like the following:

BAL %BT25fred branch to sub-
label 25 of routine ' fred '

B %A19 branch to #19

42 The ARM development environment

B %67print_ char ; branch to #67 of ' print_ char '

The following example demonstrates the use of the A and T suffixes
in nested macros. Macro B is defined:

01

MACRO

MacroB

MEND

Macro A is defined:

MACRO

MacroA

B %01
MacroB
MEND

; Code , not including
; 01 definition

The following code appears in the main source file:

01
MacroA

The %01 in MacroA will find the label in the main source file-it is further
away than the one in MacroB, but more deeply nested macros are not
searched:

• % TOl would produce an error
• %A01 would find 01 in macro B

Instructions

The instruction field of the source file is expected to include a valid ARM
instruction or Assembler directive followed by any arguments required.
A space or tab character must separate the label or beginning of the line
and the instruction or directive itself, if one is included in the line. Refer
to Appendices A to C for details on the syntax of Assembler instructions
and directives.

Comments

All text and numbers appearing after a semicolon are treated as a com­
ment, that is ignored by the Assembler. The only exception to this is if the
semicolon is contained within a string constant.

Blank lines may also be included to make the code easier to read;
they are ignored by the Assembler.

3.3.2

The ARM Assembler 43

Areas

AREAs are the independent, named, indivisible chunks of program
source which are then taken and manipulated by the Linker. All programs
will consist of one or more areas; complex programs may be written in
several self-contained pieces which are linked together. The syntax of the
AREA directive is:

AREA name{,attr}{ , attr} . . . { ,ALIGN=expression }

Each assembled or compiled program will normally consist of two
areas, a writable area for data and a read-only area for code; re-entrant
code will have a third area, marked 'BASED sb', which contains relocata­
ble address constants.

Areas can be given one or more attributes which determine the way
they are handled by the Linker and provide information about memory
management in the run-time environment. The attributes shown in Table
3.1 can be used.

Table 3.1 AREA directive attributes

Attribute

ABS

REL

PIC

CODE

DATA

REAOONLY

COMDEF

COMMON

NOINIT

REENTRANT

BASED Rn

ALIGN{=exp}

Effect

Area has an absolute address and is not relocatable.

Area is relocatable by the Linker. This is the default setting.

Position-independent code.

Area contains machine instructions.

Area contains data.

Area cannot be written to.

Common area definition.

Common area.

Data area initialized to zero and containing only space reserva­
tion directives.

Re-entrant area (apply only to code areas).

Static base data area, containing tables of address constants
locating static data items. Labels defined in this area are treated
as register-relative expressions for the purposes of load and
store instructions.

Adjust program counter to be address aligned (see text).

44 The ARM development environment

3.3.3

The ALIGN sub-directive can also be used to force the start of the
area with a 211 byte address boundary. The default is a 4-byte word
boundary but any number between two and 12 can be used; for example,
ALIGN=3 aligns to an 8-byte boundary.

The example below declares a relocatable, reentrant code area called
IRQ_Service:

AREA IRQ_ Service , CODE , REENTRANT

while this example declares a data area called Despatch_Table aligned to
a four byte boundary:

AREA Despatch_ Table , DATA , ALIGN=2

Constants

Constants may be used as arguments to any instruction; three types of
constant are supported: numeric, string and Boolean.

Numeric constants

Numeric constants are allowed in several forms: decimal, hexadecimal
(either 'C' style or Acorn style), or any number base between two and
nine entered in the form n_xxx where n is the number of the base and
xxx a number in that base. For example:

123

Oxffe3
&65FF
7_ 350

String constants

decimal

hexadecimal ' C ' style

hexadecimal Acorn style

base seven

String constants should be enclosed by double quotes. To use the double
quote or dollar characters within a string, enter a pair of the character
required. For example:

"Value is $$ " ; == "Value is $ "

"A Christmas Carol "

Boolean constants

The Boolean constants True and False should be written as { TRUE } and
{F ALSE } .

3.3.4

The ARM Assembler 45

Symbols, labels and variables

Symbols can represent numeric, logical and string values or addresses.
Labels are a special form of symbol distinguished by their position at the
start of lines. The address is not explicitly stated but is resolved during
assembly.

Symbol names

Symbols must start with a letter in either case; the Assembler is case­
sensitive and treats the two forms as distinct. Symbols may contain alpha­
numeric characters and the underscore character, and may be up to up to
255 characters in length (all characters are significant). Further characters,
such as punctuation marks and symbols, can be used if the symbol name
is enclosed by vertical bar characters, for example I fish$$@ I . Example
valid symbol names are:

TimeCounter
Time_ 0800
I "time "_@03 I

Symbols should not use the same name as instruction mnemonics or
directives; although the Assembler can tell them apart, a programmer
may not always be able to.

Equational directives

The Assembler supports several directives to give symbolic names to
numeric expressions and registers, both integer and coprocessor.

Number equating directives

label EQU expression

label * expression

These two synonymous directives associate the symbol label supplied
with the result of the expression. Here are some typical examples:

ITwoATenl
Kilo
Mega
BaseAddress

Register equating directives

EQU

EQU
EQU

*

label RN numeric - expression

label FN numeric - expression

32 * 32
ITwoATenl
Kilo * Kilo
Ox007f01c0

The RN directive defines register names; registers may only be referred to

46 The ARM development environment

by name: the names RO-RlS, rO-rlS, PC, pc, LR and lr are pre-defined.
The FN directive defines floating-point register names; the names

FO-F7 and f0-f7 are pre-defined.
Typically, register equates are used at the start of assembly language

source files to establish aliases for registers within that file, for example:

Base RN 0

Index RN 1

Stride RN 2

Result FN 6

Amplitude FN 7

Phase FN 8

Coprocessor equating directives

label CP numeric - expression

label CN numeric-expression

Define integer
; register aliases

Define floating-point

aliases

The CP directive defines coprocessor names, which must be in the range 0
to 15. The names pO-plS are pre-defined.

The CN directive defines a name for a coprocessor register number;
cO-clS are pre-defined.

ARM600 _ Sys CP 15 System control coprocessor #15

ARM_ ID CN 0 p15 , co - ARM ID

Control CN 1 pl5 , cl - Control

TT_Base CN 2 pl5, c2 - Transl . Table Base

Domain_Ctrl CN 3 pl5 , c3 - Domain Access Control

Symbols as variables

Symbols can be used as variables to represent numbers, logical values
and string values. They are declared using the GBL (global) and LCL
(local) directives and values assigned to them using the directives SETA,
SETL or SETS according to whether the symbol is typed Arithmetic, Logi­
cal or String.

Scope of variables

The scope of global variables extends across the entire source file while
that of local variables is restricted to a particular instantiation of a macro.
Addresses can also be represented by symbols, but in this case the value

3.3.5

The ARM Assembler 47

is only assigned during assembly or when the file is linked.

Built-in variables

There are several special variables built into the assembler. They are
shown in Table 3.2.

Table 3.2 Built-in variables in ARM Assembler

Variable Purpose

Current program location counter (PC} or'. '

(VAR} or '@'

(TRUE}

(FALSE}

(OPT}

(CONFIG}

Current storage area location counter

Logical constant true

Logical constant false

Current assembly listing option (see Appendix C)

Has the value 32 or 26 according to PC address size

Declaring and assigning to variables

The variable declaration and assignment directives have a syntax which
is slightly different from the ARM instruction syntax. Below are some
example variable declarations:

GBLA MemorySize

MemorySize SETA 32*1024*1024

GBLL Big_ Switch
Big_ Switch SETL {TRUE}

GBLS Me ssage
Message SETS "Hello world ";

Conditional and repetitive assembly

IF ... ELSE ... ENDIF

global arithmetic
symbol

set MemorySize to
32Mbyte

global logical symbol
set Big_ Switch to TRUE

global string symbol
set Message to quoted
string

ARM Assembler source can be assembled conditionally using the IF,
ELSE and ENDIF directives. If the logical expression given is true, the
code between IF and ELSE is assembled; if it is false, the code between

48 The ARM development environment

3.3.6

ELSE and ENDIF is assembled instead.
The syntax of the IF ... ELSE ... ENDIF directives is:

IF logical-expression

code section 1 ...

ELSE

code section 2 ...

END IF

A space or tab character must precede the directives, as otherwise
they would be mistaken for labels.

The characters [, I and] may be used as alternatives for IF, ELSE
and ENDIF respectively. For example:

WHILE ... WEND

a=b IF (a==b) THEN
do this ...

ELSE
do that ...

END IF

A further conditional Assembly construct is available in the form of the
WHILE and WEND directives. As long as the expression following the
WHILE directive is true, the code between the WHILE and WEND direc­
tives will be assembled; if the expression is false to start with, this code
will not be assembled.

The syntax here is:

WHILE logica l-expression

code

WEND

Macros

The Assembler provides a macro facility which can be used to insert a fre­
quently used group of instructions or directives with one line of code. The
code represented by a macro can use another macro, with up to 255 levels
of nested macros. Using macros makes code easier to change, because the
change need only be entered once, and also makes code easier to read and
understand. Macros are typically used to define more complex instruc­
tions which can then be entered quickly as a single line of Assembler.

The MACRO and MEND directives are used to enclose macro defi­
nitions and to show the Assembler that the code enclosed between them

The ARM Assembler 49

will be called as a macro.
The first line of the macro is a template of the line that invokes it.

Macros are invoked by a name which is supplied here, along with any
parameters the macro takes.

Macros should not contain any unclosed WHILE/WEND loops or
IF /ENDIF constructions. If they do, they should be terminated with the
MEXIT directive as well as MEND, to ensure that further expansion does
not take place within these constructions.

If you wish to label a macro, the label must be specified as an argu­
ment to the MACRO directive.

A macro example

Below is an example macro called 'TABLE' which takes two parameters, a
starting value and a decrement, and emits a table of values arrived at by
repeatedly decrementing the starting value:

$label

$label
counter

counter

AREA Example, DATA
MACRO

TABLE $start, $dee

LCLA counter

SETA $start

DCB counter
WHILE counter >= $dee
SETA counter - $dee
DCB counter

WEND
ALIGN
MEND

defined area as data
start macro
definition
macro name and
parameters
declare local

variable

assign parameter to
local
First table entry

Subsequent table
entries

force word alignment
end of macro
definition

To invoke the macro simply requires it to be called by name along with
any parameters, as follows:

a _ table TABLE 10, 3

Miscellaneous directives

The following directives are also important in understanding the pro­
gramming examples which appear in this book. The ARM Assembler
supports a wide range of directives, not all of which are relevant here:
consult Appendix C or the ARM Software Development Toolkit docu­
mentation for an exhaustive and up-to-date list.

50 The ARM development environment

Alignment directive

ALIGN {power-of-two{ , offset - expression}}

This directive forces the program location counter to a word-aligned
address (that is address divisible by four) or optionally to be aligned to
some other power of two with a further optional byte offset.

End of source file directive

END

Every source file for the Assembler must end with this directive on a line
by itself.

Storage reservation directives

{label} DCB expression- list

{label} DCW expression-list

{label} DCD expression- list

{label} % numeric -expression
I

These directives define byte, half-word or word quantities in memory,
optionally associating a label. The expression list can consist of any series
of numeric or string expressions separated by commas; note that strings
must have an explicit terminating zero added manually if required, for
example:

My_ String DCB "Venice in peril ", 0

The per cent % directive initializes the specified number of bytes to zeros.

Store layout directives

A expression{ , base-register}{label}

expression

These directives allow 'storage maps' to be set up and optionally associ­
ated with a base register and a label.

The I\ directive sets the origin of a storage map at the address given
by the expression. A storage map location counter, referred to as '@', is
also set to the same address. Each I\ directive resets @ to allow many stor­
age maps.

The# directive describes the space within a storage map. Each time
#is used its label (if any) is given the value of@ and then incremented by
the number of bytes following the #.

Where a base register is specified with the I\ directive, that register
then becomes implicit in all symbols subsequently defined by # until can-

3.3.7

The ARM Assembler 51

celled by a subsequent /\ directive. These register-relative symbols can
later be used in LDR/ STR instructions. For example:

0, r9
4

Label # 4

LDR rO, Label; load 'register-relative'

where the LDR instruction is equivalent to:

LDR rO , [r9 , #4); explicit register-relative

Refer to Chapter 4 for further information on the use of storage maps (see
LDR/ STR).

Literal table origin directive

LTORG numeric - expression

The LTORG directive forces the literal pool, used to store program con­
stants, to be placed immediately after the directive. A default LTORG is
obeyed at every END directive which is not part of a nested assembly, but
larger programs may require several LTORGs to avoid violating the
±4 Kbyte offset limit imposed by the LDR/STR instruction.

Running arrnasrn

ARM Assembler is invoked from the command line using the following
command:

armasm {options} sourcefile objectfile

The sourcefile is the name of the file containing the code to be
assembled and the objectfile is the name by which the assembled code is
to be stored. A number of command-line options are supported by the
Assembler to allow the selection of various modes; they are discussed in
the next section.

The following example command assembles the file source to the
file object, including debugging tables and a listing to be stored in the
file listing:

armasm -g -list listing source object

The following example assembles the file source to the file object ,
including debugging code and specifying the ARM Procedure Call Stand­
ard version 3 and that the code supports re-entrancy:

armasm -g -apes 3/REENTRANT source object

52 The ARM development environment

Command-line switches

The command-line switches shown in Table 3.3 can be used when invok­
ing the Assembler. All switches should be preceded by a hyphen. Capital
letters indicate abbreviated forms of the switches that can be used. If the
switch is not explicitly entered the default setting indicated in the table is
assumed.

Table 3.3 Assembler command-line switches

Switch Purpose

-Help Displays a summary of command-line options.

-Depend depend- Saves make source file dependencies in the file named
file

-ldir{ ,dir) Adds directories to the source file search path so that the full
path name need not be entered when files are named as argu­
ments to the GET and INCLUDE directives.

-PreDefine direc- Pre-executes a SETx (and associated GBLx) directive.
tive

-NOCache

-MaxCache n

-NOEsc

-NO War

-g

-Llttleend

-Blgend

-Apes option
{/qualifier}{ I
qualifier ... }

Listing options

Tums off source caching between passes one and two of the
Assembler to save memory. The default is caching on.

Sets the maximum source cache size in megabytes. The default
is 8Mbyte.

Ignore C-style escape sequences.

Tum off warning messages. The default is on.

Output ARM Symbolic Debugger debugging tables.

Little-endian byte order (the default).

Big-endian byte order.

Selects a procedure call standard (APCS). An APCS option
need only be entered if you need to use a setting different from
that to which your copy of the SOT is configured.

Listing options (Table 3.4) can be set within the source code by using the
OPT directive. A listing will only be produced if listing is explicitly
turned on using the -list command-line switch. The default setting is to
produce a listing which includes the declaration of variables, the expan­
sion and invocation of macros, conditional and MEND directives, on the

3.4

The ARM C compiler 53

second pass of the Assembler. Different settings can be achieved using the
OPT options listed in Appendix C.

If the listing is being produced as pages, titles and subtitles can be
added from within the code using the TTL and SUBT directives respec­
tively.

Table 3.4 Assembler listing options

Listing option

-list listingfile

-NOTerse

-Wldth n

-Length n

-Xref

Purpose

This option produces an additional listing file, saved in the file
listingfile. The contents of the file can be changed from the
default with the use of the following sub-options:

Tums the terse flag off, allowing conditional code not assem­
bled to be listed anyway.

Sets the page width for listings; the default is 79.

Sets listing page length. The default is 66; setting length to zero
will produce output with no page breaks.

Lists cross-reference information on symbols, that is where they
are defined and where they are used, by line numbers.

The ARM C compiler

The ARM C compiler, armcc, is a mature compiler which conforms to the
1990 ANSI C language standard. It also supports the pee dialect of C (usu­
ally associated with Berkeley Unix) and is based upon Norcroft C.

Libraries

Two libraries are provided with the SDT which support cross-compiled
C. Both are supplied in two forms: as source which needs to be
re-targeted to work with particular hardware, and as binaries which will
work immediately with the ARMulator ARM software emulator.

The first library is a minimal standalone run-time library, which
contains division and remainder functions, stack-limit checking func­
tions, lowest-level memory management functions (stack and heap), pro­
gram start-up and simple I/0 functions. It is provided as an ARM
Assembler file.

The second library is a full ANSI C library and contains:

54 The ARM development environment

3.4.1

• Target-independent modules in ANSI C
• Target-independent modules written in ARM assembler
• Target-dependent modules in ANSI C
• Target-dependent modules in ARM Assembler

The target-dependent modules are supplied by ARM in versions
which will work immediately on the ARMulator, and as an additional
example, on Acorn computers running the RISC OS operating system.
They are also supplied as source files which need to be targeted towards
the ARM hardware which is being developed.

Using the ARM C compiler

The ARM C compiler uses the following file naming conventions to iden­
tify different classes of file it uses and produces. In most operating sys­
tems these appear as filename extensions in the form ' f i 1 ename . x'; in
others which do not support filename extensions files should be placed in
a directory named after the file type, or are placed there by the compiler.
The filename types are:

program.c

program . h

program . o

program.s

program. ls t

Command-line options

C source file

C header file

ARM object file

ARM assembly language

Output listing file

Several command-line options are available and should be entered when
invoking armcc. armcc is invoked in the following way:

armcc {options) -c filenames

So, for example,

armcc -list -c cprog .c

will compile the file cprog . c to a file cprog . o and generate a listing file
cprog . 1st.

3.5

The ARM Linker 55

Any combination of the options in Table 3.5 can be used.

Table 3.5 ARM C compiler options

Option

-help

-pee

-fussy

-strict

-list

-Llttleend

-Blgend

Purpose

Prints on-screen a summary of the command line options avail­
able.

Instructs the compiler to produce pee dialect C.

A synonym for 'strict': see below

Be extra strict about forcing conformance to the C standard
selected (that is ANSI or pee).

Create a listing file. This includes lines of object code along
with any error messages or warnings generated by the com­
piler.

Compile code in little-endian byte order.

Compile code in big-endian byte order.

The ARM Linker

The ARM Linker combines object files with object libraries and resolves
address references to create an executable program. All object files gener­
ated by the ARM Assembler and the ARM C compiler must be linked
before they can be run as standalone programs.

The Linker requires at least one pre-compiled or assembled object
file in ARM Object Format (AOF), that is standard output from the ARM
C Compiler or the ARM Assembler. In addition it can accept one or more
object libraries in ARM Object Library format.

The Linker performs the following functions:

• Resolves symbolic references between object files
• Extracts from object libraries any object modules referred to in the

object files it is linking
• Sorts object fragments (AOF areas) according to their attributes
• Consolidates fragments with similar attributes into contiguous

chunks of code

So, for example, CODE areas scattered across several assembled
object files will be placed together. The Linker further resolves relocatable

56 The ARM development environment

3.5.1

addresses and finally generates an output image which is the executable
program.

Using the Linker

Table 3.6 ARM Linker command-line options

Option

-Help

-Output name

-Debug

-VIA filename

-Verbose

-MAP

-Xref

-Symbols
filename

-Base address

-Entry address

-Case

-Unresolved
symbol

Purpose

Prints a list of command-line options available to the Linker

Give a name for the Linker 's output (usually the image file)

Include ARM Symbolic Debugger tables in the output image,
that is preserves symbol information. Low-level debugging
information generated by the Linker is also included.

Read the list of file names contained in the file filename. As
many -VIA options as required can be used. Files contained in
the list must be in a linkable format, that is AOF or libraries.

Print on-screen messages indicating the Linker's progress. A
stronger option, -VV, provides even more information.

This option creates a map of the base and size of each area
being linked.

Lists references between input areas.

Stores a list of symbols used in the link step in the file filename.

Sets the Linker output to load at the specified address.

If no entry point is included in the program image, an entry
address must be specified on the Linker command-line.

Matches symbol names regardless of their case.

Any references to an undefined symbol are matched to the
symbol specified here. Symbol must therefore be a defined glo­
bal symbol or the link will fail.

The Linker is invoked from the command line using the following form:

armlink {options) input - file-list

The following example links the files named, producing debugging
tables and printing on-screen messages about the progress of the linking

3.5.2

3.6

3.6.1

The ARM Symbolic Debugger 57

operation:

armlink -D - v fredl . o fred2 . o fred3 . o

Command-line options

The options in Table 3.6 are available at the command line and should be
entered as described. Capital letters show minimum abbreviations which
can be used.

Linker output options

Linker output can take one of several forms: each Toolkit is supplied con­
figured for a particular output format. Other Linker output formats are
available by means of command-line options. Refer to the ARM SOT doc­
umentation for further information.

Further formats include overlaid images and RISC OS modules for
use with Acorn Computers' RISC OS operating system.

The ARM Symbolic Debugger

Introduction to the ARM debugger

The ARM Software Development Toolkit includes the ARM Symbolic
Debugger armsd.

The armsd debugger

armsd contains the ARM processor emulation package ARMulator and
enables ARM code to be executed on the Toolkit host computer without
any ARM hardware being required. The ARMulator is described more
fully in the next section.

armsd also debugs code running under the ARM debug monitor on
an evaluation card with an RS232 serial connection to the Toolkit host,
such as the ARM PIE card.

These two forms of the debugger enable system developers to start
producing and debugging code for their target ARM hardware using the
software ARMulator, and later either one of ARM or their chip supplier's
evaluation cards or their own ARM-based hardware.

• armsd is set up by default to use the ARM6 architecture and the

58 The ARM development environment

3.6.2

3.6.3

SDT host's byte ordering. However, it can be configured to include
the 26-bit ARMulator and to support the opposite endianness to the
host. A set of C libraries to handle all four possible combinations of
program counter size and byte sex is provided in the SDT.

Remote debug options

There are two options which are combined for remote debugging with
armsd: the Remote Debug Protocol and the Remote Debug Interface.

The Remote Debug Interface provides the ARM symbolic debugger
with a uniform way to communicate with the debug monitor in three dif­
ferent situations: first, when armsd is being run on the ARMulator, or in
the self-hosted version designed for use with Acorn Computers' RISC OS
operating system; second, when armsd and the ARMulator are being nm
in separate Unix processes; and third, when armsd is driving a debug
monitor and debuggee on ARM-based hardware connected to the host
via a serial or SCSI connection.

The Remote Debug Protocol contains a set of C functions which sim­
plify the calling of debugging procedures such as starting and ending ses­
sions, reading and writing memory addresses and CPU and coprocessor
states, setting and clearing break- and watch-points, and stepping
through the program being debugged.

Debugging using arrnsd

The armsd debugger enable both low-level and high-level debugging to
be carried out. Commands for high-level debugging include commands
for accessing and, where relevant, changing the contents of variables,
symbols, constants, arguments and memory locations. Programs can be
executed using the Go command, or stepped through until break- or
watch-points set using the debugger are reached. Program context can be
displayed and commands allow quick movement between contexts and
procedures.

Low-level debugging commands permit the display of contents of
the registers, and of floating-point registers. The contents of memory can
be examined and listed in hexadecimal, ASCII and instruction formats.
Low-level symbols (for example register names) can be defined and used
in debugging; the standard ARM register names are predefined.

In both forms of debugging log files of activity can be stored.

3.7

3.8

The ARMulator 59

The ARMulator

The ARMulator is a software ARM6 processor emulator supplied as part
of the SDT. Two variants are available; the standard one emulates the
ARM6/60/600 environment with its 32-bit address space, while the sec­
ond version emulates the 26-bit program counter of the ARM2/3/61 if
required.

The ARMulator is intended to assist developers create and test
ARM-hosted software on non-ARM systems. Such software can be accu­
rately benchmarked and the performance of the hardware and software
under development predicted. Working with ARMsd via the Remote
Debug Interface the ARMulator can be used to test and debug ARM­
based programs before the hardware on which they will be run is ready.

The ARMulator also provides an emulation of the ARM processor
suitable for integration into more complex hardware simulations.

The ARMulator operates in two different modes, each suitable for
different tasks. The instruction-based mode executes an instruction at a
time, either singly or in sequence. The clock-cycle mode executes either
one tick of the ARM' s master clock, or alternate phases of the master
clock. In both cases inputs are read from the ARMulator's model of the
ARM processor's pins, and outputs are written back to them.

The ARMulator includes its model of the ARM processor core and
models of memory and coprocessor interfaces, as well as an operating
system interface. Examples of all of these are provided with the SDT, rep­
resenting an ARM evaluation card, but users of the SDT are expected to
want to construct their own memory model to meet their own require­
ments. A library of functions to assist in this process is included with the
SDT.

ARMulator models can be built either to emphasize rapid prototype
development or to provide the fastest possible ARM emulation.

Summary

The ARM Software Development Toolkit provides a range of choices for ,
programmers wishing to develop for the platform.

The Assembler and C compiler both allow code to be written which
can be tightly optimized to extract the best performance from the ARM.

A range of debugging facilities are provided. Programmers can test
their work using software or hardware simulation products, and use

60 The ARM development environment

these in conjunction with the debugger.
The Linker takes assembled or compiled source files and produces

object code for the specified ARM environment.

4.1

4
The ARM6 integer instruction
set

Introduction

The ARM instruction set is a good target for high-level language compil­
ers; there are few interdependencies between instructions, so assembly
language programming is also straightforward. Not many programmers
wish to work at the binary instruction level, so in this chapter we concen­
trate on the assembly language syntax for ARM integer instructions, with
some of the examples being illustrated in both C and Assembler. Details
of the binary format of each instruction may be found in Appendix A.

This chapter describes the syntax and meaning of each of the
instructions understood by the ARM6 CPU core; instruction set exten­
sions for floating-point operations and other architecture extensions are
discussed in their respective chapters.

The first part of the chapter describes those aspects of the instruc­
tion set that are common to all instruction types, for example the syntax
conventions and major architectural issues. Subsequent sections detail
each of the instruction classes and demonstrate their applications. Finally,
the last section discusses restrictions and limitations imposed on ARM
programming, notably those to do with the Program Counter (rlS).

61

62 The ARM6 integer instruction set

4.2

4.3

Syntax conventions

Throughout this chapter and the rest of the book a number of conventions
are used to allow instruction syntax and function to be concisely
described; examples of these conventions are shown below:

Text like this

is used to represent commands, instructions or syntax definitions.

items in italics

represent fields which must be completed before a command or instruc­
tion may be issued.

(items in braces}

are optional and so only need to appear if the optional feature is desired.

Square brackets , for example : CPSR[31 : 28]

mean bits 31 to 28 inclusive of the register or bus in question, here the
CPSR.

Conditional execution

All ARM instructions are conditionally executed according to the state of
the CPSR flags and the condition field within the instruction. This is one
of the most significant features of the ARM instruction set, since it allows
very dense in-line code (without branches) to be written. Instructions that
are not executed take a single clock cycle, so the time penalty of not exe­
cuting several conditional instructions is frequently less than the over­
head of the branch instruction or subroutine call that would otherwise be
required.

Every ARM instruction contains a four-bit field, always instruction
word bits [31..28] in the ARM6 instruction set, which encodes the circum­
stances under which the instruction will actually be executed.The sixteen
possible conditions are represented by two-character mnemonics which
are appended to the instruction itself, so Branch (Bin assembly language)
becomes BEQ for Branch if Equal.

4.3.1

Conditional execution 63

The 'AL'ways condition code

Most instructions are assembled with the default condition field always
(mnemonic AL) which ignores the state of the conc,iition flags and exe­
cutes the instruction anyway. The Assembler assumes the always condi­
tion unless specifically instructed otherwise. Where truly conditional
execution is actually required another value for the condition field must
be used. Table 4.1 summarizes the possible instruction condition mne­
monics.

ARM instruction condition fields

Table 4.1 lists the full set of ARM condition codes which can be appended
to instructions.

Table 4.1 Instruction condition mnemonics

Code Mnemonic Flags Meaning

0000 EQ Zset equal

0001 NE Zclear not equal

0010 CS or HS C set unsigned higher or same

0011 CC or LO C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 vs Vset overflow

0111 vc V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N==V greater or equal

1011 LT N!=V less than

1100 GT Z clear AND (N==V) greater than

1101 LE Z set OR (N!=V) less than or equal

1110 AL Don't care always

64 The ARM6 integer instruction set

4.3.2 Byte ordering (little-endian versus big-endian)

ARM integer instructions operate on data sizes of either a byte (8 bits) or
a word (32 bits). ARM addresses refer to bytes, so the address of an
aligned word always has the bottom two bits clear. No other data types
are directly supported by the instruction set, but of course arbitrary data
types such as bit fields or half words may be manipulated using
sequences of ARM instructions.

The ARM6 CPU can be configured to operate with either of the two
different conventions for byte ordering, known as 'little-endian' or 'big­
endian' byte ordering. The byte which is reached by an address whose
bottom two bits are both zero, that is XXX:XXXOO, can be either the least
significant in the addressed word (little-endian) or the most significant
(big-endian).

Various computer manufacturers have adopted each strategy: the
IBM360, MIPS, Motorola and SPARC architectures are all big-endian,
whilst the DEC VAX & DEC Alpha, Intel 80x86 and default ARM architec­
tures are all little-endian (Hennessy and Patterson, 1990).

Table 4.2 summarizes the effects of byte ordering on the byte refer­
enced by particular addresses; here the ARM's bus interface signal 'not­
Byte/Word' and the two least significant address bus bits are considered.

Table 4.2 Byte ordering

Big-endian Little-endian
nByte AO Al
/Word

Word Word 1 x x
Most significant byte Least significant byte 0 0 0

Second most significant byte Second least significant byte 0 0 1

Second least significant byte Second most significant byte 0 1 0

Least significant byte Most significant byte 0 1 1

The configuration of byte ordering is achieved through manipula­
tion of the CPU core's control signals, usually through the execution of
coprocessor instructions. Refer to Chapter 9 for further information.

4.4

4.4.1

Data processing instructions 65

Data processing instructions

Introduction to data processing instructions

The largest group of ARM instructions is the data processing instructions.
Data transfers between registers, arithmetic and logical operations, and
comparisons all fall into this category. All data processing instructions
accept one or more registers as their operands and always return the
result to a register, optionally setting the condition code flags according
to the result. See Figure 4.1 for a full list of instructions.

First operand

The first source operand of a data processing instruction (except for MOV
and MVN) is always a register and is known in syntax definitions as 'Rn'.
Any register may be specified, including the program counter (rlS),
allowing various flavours of PC-relative addressing to be synthesized.

Second operand

The second operand (or the only operand of MOV and MVN) may be
either a register, known as Rm and optionally shifted before use, or an
8-bit immediate constant, optionally rotated before use. The shifted regis­
ter forms allow one of the following types of multi-bit shift:

• Logical Shift Left (LSL)
• Logical Shift Right (LSR)
• Arithmetic Shift Right (ASR)
• Rotate Right (ROR)

In each case the number of bits to shift by is supplied either as a
constant or by another register.

One further shift type is available: Rotate Right Extended (RRX)
performs a single bit rotation of the operand through the Carry flag.

Results: data

Any register may be specified as the destination for the result of a data
processing instruction. This leaves open the possibility of using the Pro­
gram counter (rlS) as the destination, in which case the flow of instruc­
tion execution is likely to change to a new address. In a very few
circumstances this might be attractive (for example calculated branches)
but it is fraught with complexities: a discussion of the pitfalls of using the
PC as a destination is included in Pitfalls, quirks and restrictions on
page 102.

66 The ARM6 integer instruction set

Operand2

Destination register

1st operand register

Set condition codes

0

0 = do not alter condition codes
1 = set condition codes

~------ Operation code

Figure 4.1 Data processing instructions

Results: condition code flags

0000 =AND - Rd:=Op1 AND Op2
0001 = EOR - Rd:=Op1 EOR Op2
0010 =SUB- Rd:= Op1 -Op2
0011 = RSB - Rd :=Op2 - Op1
0100 =ADD - Rd:=Op1 + Op2
0101 =ADC - Rd:=Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C - 1
0111 =RSC - Rd:= Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op1 AND Op2
1001 =TEO - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 =ORR - Rd:= Op1 OR Op2
1101 = MOV- Rd:= Op2
1110 = BIC - Rd :=Op1 AND NOT Op2
1111 = MVN -Rd:= NOT Op2

Immediate operand
O = operand2 is a register

11 4 3 0

Shift Rm

~.
shilt applied to Rm 2nd operand register

1 = operand 2 is an immediate value

11 8 0

Rotate Imm

~signed 8 bit immediate value
Shift applied to Imm

Condition field

The PSR condition code flags N, Z, C, V may be optionally updated by
these instructions according to whether or not the S suffix is appended to
the instruction mnemonic.

The comparison instructions CMN, CMP, TST, and TEQ always
update the condition codes, so no S suffix is needed, and they return no
other result.

4.4.2

Data processing instructions 67

Shifted operands: instruction-specified shift amounts

When the shift amount is specified by the instruction it is contained in a
5-bit field and may therefore take any value in the range 0 .. 31. The shift
amount determines how many bits are shifted in the manner specified by
the shift type field.

The shift type field selects between LSL, LSR, ASR, ROR and RRX. A
detailed description of the action of each type of shift follows; a figure
provides a diagrammatic explanation of each.

LSL-logical shift left

The contents of the register Rm are moved by the number of bits specified
by the shift amount to more significant bit positions. The least significant
bits thus revealed are filled with zeros; the most significant bits are dis­
carded except that the least significant discarded bit becomes the shifter
carry output (which may later set the C flag in the CPSR) (Figure 4.2).

An LSL with a shift amount of zero is treated as a special case: the
shifter carry output is simply the old value of the C flag. The contents of
the operand register Rm are passed through un-shifted.

31 27 26

I contents of Rm

carry~
out r

I value of operand 2

Figure 4.2 Logical shift left by five bits

LSR-logical shift right

0

ooooo l

The contents of the register Rm are moved by the number of bits specified
by the shift amount to less significant bit positions. The most significant
bits thus revealed are filled with zeros; the least significant bits are dis­
carded except that the most significant discarded bit becomes the shifter
carry output (which may later set the C flag in the CPSR) (Figure 4.3).

Since the shift form LSR #0 is redundant (because it would dupli­
cate the effect of LSL #0) its instruction format is reserved and used to
encode LSR #32. This yields a result of zero, but makes the shifter carry

68 The ARM6 integer instruction set

output become bit 31 of the source register.

31 5 4 0

I contents of Rm I

~ ~carryout
l~-o-o_o_o_o~-v-a-lu_e_o_f_o_p_e_ra_n_d_2~~~~~---.I

Figure 4.3 Logical shift right

ASA-arithmetic shift right

The contents of the register Rm are moved by the number of bits specified
by the shift amount to less significant bit positions. The most significant
bits thus revealed are filled with copies of bit 31 of Rm (the sign bit)
thereby preserving 2's complement signed values through the shift. The
remaining less significant bits are discarded, with the exception that the
most significant discarded bit becomes the shifter carry output, which
may later set the C flag in the CPSR (if the S suffix was present in the
instruction) (Figure 4.4).

The shift form ASR #0 is reserved and used to encode ASR #32; this
duplicates the sign bit 31 of the source register throughout the result (ie
the result only ever contains either all ones, that is -1, or all zeros, that is
0) . In this case the shifter carry output also takes the value of bit 31.

31 30 5 4 0

contents of Rm

carry out

value of operand 2

Figure 4.4 Arithmetic shift right

ROA-rotate right

The contents of the register Rm are moved by the number of bits specified
by the shift amount to less significant bit positions (like LSR) and those
bits which are rotated beyond bit zero are re-inserted at the high end of
the result (in place of the zeros inserted here by LSR) (Figure 4.5).

The shifter carry out takes the value of the bit in Rm which ends up
as bit 31 of the result, except when ROR #0 is specified.

4.4.3

Data processing instructions 69

ROR #0 encodes the special case which performs Rotate Right
Extended (RRX); see below.

31 5 4 0 ,.
contents of Rm I

~ ~ca'~
out

value of operand 2 I
Figure 4.5 Rotate right

RAX - rotate right extended

The contents of the 33-bit shift register formed by concatenating the C flag
and Rm (see Figure 4.6) is rotated by a single bit to less significant bit
positions and the new shifter carry out becomes the original bit zero.
Note that only a single bit shift ever occurs.

31 1 0

contents of Rm

~\ \~ryout
~, ~~~~~v-a-lu_e_o_f_o_p_e-ra_n_d_2~~~~-.I

Figure 4.6 Rotate right extended

Shifted operands: register-specified shift amounts

When register-specified shifts are used the least significant byte of the
shift amount register Rs is used to determine the shift amount. Rs may be
any register other than rlS (PC). One of the following behaviours will
occur according to the value of this byte.

If the shift amount is zero the contents of Rm will be passed on
unchanged and the previous C flag will be returned as the shifter carry
output.

If the shift amount is between 1and31 the result will be the same as
that produced by the same kind of shift instruction but with a fixed shift

70 The ARM6 integer instruction set

4.4.4

4.4.5

amount.
If the shift amount is 32 or more the result will be as expected from

the behaviours described above, namely:

• LSL by 32 has the result zero and carry out of bit zero of Rm
• LSL by >32 has result zero, carry out zero
• LSR by 32 has result zero and carry out of bit 31 of Rm
• LSR by >32 has result zero, carry out zero
• ASR by 32 or more has result filled with and carry out of bit 31 of

Rm
• ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm
• ROR by >32 is scaled to fit the range 1..32

Immediate operands

The alternative to a shifted operand in data processing instructions is an
(optionally rotated) constant. An 8-bit immediate value is rotated by
twice the amount specified by a 4-bit unsigned 'shift amount' field to give
a result which is used as the operand. This allows many typical constants,
notably including all powers of two, to be generated from a small field in
the instruction. Note that a shift amount of zero, that is no rotation, is
allowed.

Where a value is required that cannot be generated by this form of
instruction it is typical to employ two or three instructions, for example a
shift followed by an add, to calculate the desired result into a register. The
assembler also allows the instruction LDR (see Section 3.3.8) as an alter­
native solution for loading constants.

If the assembler has the option of using a shift amount of 0, it always
will. For example, #1 could be encoded as:

1 ROR 0
4 ROR 2
16 ROR 4
64 ROR 6

The assembler will always choose the first option. This affects what the
shifter carry out becomes.

Data movement data processing instructions

MOV{cond}{S} Rd , Op2

MVN{cond}{S} Rd , Op2

Rd : =Oper a nd2

Rd :=NOT Operand2

The data movement instructions are logical operations which work on 32-

Data processing instructions 71

bit operands.

• MOV yields a copy of the operand at the destination
• MVN yields the bitwise logical inverse of the operand

In both cases, using the S suffix causes the condition code flags to be
set according to the result:

• N is set equal to bit 31 of the result
• Z is set to 1 if the result is zero and 0 if the result is non-zero
• C is set to the shifter carry out
• V is unchanged

Typical uses of the MOV / MVN instructions include:

• Loading constants into registers (but note that some constants
cannot be generated in this way)

• Copying the contents of one register to another
• Applying a shift or rotation to a register
• Logically inverting a whole register

Instruction examples

Below are some examples of the data movement instructions in use. First
some simple examples, copying register contents and loading them with
constants:

MOV rO, rl rO . - rl

MVN rO , #0 rO . - -1

MOV rO , #0 clear rO

MOV r2, #10 r2 . - 10 (decimal 10)

MOV r3 , #Oxa r3 . - 10 (hexadecimal a)

MOV r3 , #&a r3 . - 10 (hexadecimal a)

The second example above is always substituted by the assembler if
you write MOV rO , # - 1; other small negative constants are treated sim­
ilarly.

Because of the limited size of the immediate operand field (8 bits)
the shifting options are important in allowing larger constants to be
loaded than can be fitted in 8 bits. An 8-bit immediate value is rotated
right by a 4-bit shift amount according to the following rule:

result : = 8-bit value ROR (2 * shift amount)

In fact, all immediate values are affected in this way: those that don't need
to be shifted are given a shift amount of zero. Here are some examples of

72 The ARM6 integer instruction set

values which can only be loaded by shifting the immediate field:

MOV r4 , #OxlOOO ; r4 : = OxOOOOlOOO

MOV r5 , #OxfOOOOOOf ; r5 .- OxfOOOOOOf

MOV r5 , #Oxfc000003 ; r5 . - Oxfc000003

Note that in the latter two cases the fact that a rotate is being performed
when shifting is exploited to allow the eight significant bits to be placed
at opposite ends of the result; this is rather contrived, but demonstrates
the flexibility of the technique.

Another regular use of MOV is to copy the link register (r14) to the
program counter at the end of a subroutine which has been entered using
the BL instruction (see later). In this case it is enough to issue the follow­
ing instruction to resume execution at the instruction after the subroutine
call:

MOV rl5 , rl4 ; copy return address to pc

This instruction is often written using the Assembler's register naming
facility as follows:

MOV pc , lr ; as above but with
; 'named ' regs

The explicit shifting options allow obvious simple effects such as power­
of-two multiplications and divisions, and sign extension to be performed.
Here are some examples:

MOV rO , rl, LSL #1; rO . - rl << 1 (in c
notation)

that is rO . - rl * 2

MOV rO, rl , ASR #2 ; rO . - rl >> 2 (in c
notation)

that is rO . - rl I 4 ,

rounded down

rl , r2 , LSL #4 ; rl . - r2 * 16 MOV

MOV rl , r2 , ASL #4 ; as above , that is

ASL==LSL

MOV rO , rO, LSL #16 ; sign e x tend a 16-bit

value
MOV rO , rO , ASR #16

MOV rO, rO, LSL #24 ; sign extend an

; 8-bit value

MOV

MOV

Data processing instructions 73

rO , rO , ASR #24

rO , rl , LSL r2 ; rO : = rl << r2 (C
notation)
shift by register option

We can also use the shift options to select a bit within a word, per­
haps to test its state and act accordingly. In the examples below we use
the notation rO[n] to mean bit n of rO, and rO[n:m] to mean bits n through
m inclusive:

MOVS rO , rl , LSR #1; c (flag) · - rl[O]
MOVCC rO, #10 if C=O then rO . - 10
MOVCS rO , #11 if C=l then rO . - 11

MOVS rO, r4 if r4 -- 0 then rO . - 0
MOVNE rO, #1 else rO .- 1

We can use MVN to generate logical inverses, or to move negative
constants:

MVN r3 , r3 logically invert r3

MVN rO , #0 rO · - -1 (since NOT 0
FFFFFFFF)

MVN rO , #OxF rO . - OxFFFFFFFO

MOVS rO , r4 if r4 -- 0 then rO · - 0
MVNNE rO , #0 else rO . - -1

NOP: No operation (pseudo-instruction)

The pseudo-instruction NOP is supported by the Assembler and gener­
ates a preferred instruction which has no effect on the registers or flags
other than increasing PC by 4 but takes one 5-cycle to complete. The
instruction is typically:

MOV RO, RO

No condition is allowed: a conditional no-op is just the same as an
unconditional one. Of course, it is possible to write a conditional NOP
directly, for example:

MOVEQ RO, RO

74 The ARM6 integer instruction set

4.4.6 Arithmetic data processing instructions

Add and Add with carry

ADD{cond}{S} Rd , Rn , Op2

ADC{cond}{S} Rd, Rn , Op2

Rd :=Rn+Op2

Rd :=Rn+Op2+Carry

The add instructions perform 32-bit addition on unsigned or 2's comple­
ment 32-bit values. ADD performs the addition without considering the
carry bit, while ADC adds in the carry bit before yielding the result.

Presence of the S suffix causes the condition code flags to be set on
the result, its absence leaves the flags unaffected. All ARM arithmetic and
comparison instructions treat each operand as a 32-bit integer, either
unsigned or 2's complement signed (it makes no difference). The flags
reflect the result when S is present in the following way:

• The V (overflow) flag is set if signed overflow occurs into bit 31 (the
sign bit) of the result. This may be ignored for unsigned operands,
but signals a possible error if the operands were signed 2's
complement.

• The C (carry) flag is set to the carry out of bit 31 of the ALU. This
indicates a possible overflow error if the operands were considered
unsigned.

• The Z (zero) flag is set if and only if the result was zero.
• The N (negative) flag is set to bit 31 of the result, indicating that the

result is negative where the operands were considered signed.

Here are some typical ADD instruction examples:

ADD rO , rO, #1 ; rO . - rO + 1

ADD rO, rl , r2; rO . - rl + r2

ADDS rO , rl , rl , LSL #2; rO ; rl * 5 and set
; flags

The ADC instruction is often used in conjunction with ADD to allow
multi-precision calculations on integers. It works like this:

ADC rO, rl , r2 ; rO ; rl+r2+Carry flag

Another use of ADC is to bring the C flag into a register:

ADC rO, rO, rO; shift rO left one , rO[O] . ­
; Carry

Here is the classic implementation of a 64-bit addition which adds
rO,rl to r2,r3 giving r4,r5 (where rO, r2 & r4 hold the least significant
words):

Data processing instructions 75

ADDS r4 , rO, r2 ; add LS words and generate
carry

ADC r5 , rl , r3 ; add MS words and carry

The example below uses the armcc compiler to demonstrate the
efficient compilation of a minimal leaf function involving the use of an
ADD. Here is the source listing in C:

int addints(int a , int b)

which compiles to:

ADD
MOV

int c ;
c = a + b ;
return c ;

rO , rO, rl ; rO : =rO+rl
pc, lr ; return

Subtract and reverse subtract

SUB{cond}{S} Rd , Rn , Op2 Rd: =Rn- Op2

SBC{cond}{S} Rd , Rn , Op2> Rd :=Rn-Op 2+Carry -1

RSB{cond}{S} Rd , Rn , Op2 Rd : =Op 2 -Rn

RSC{cond}{S} Rd , Rn , Op2 Rd :=Op 2 -Rn+Carry -1

The subtraction instructions perform 32-bit subtraction of unsigned or 2's
complement operands. SUB simply subtracts the second operand from
the first, while SBC does the same but deals with the carry (really a NOT
Borrow). The presence of the S suffix causes the condition code flags to be
set according to the result, just as for the ADD and ADC instructions.

The reverse subtraction instructions RSB and RSC mimic the normal
subtractions but reverse the order of subtraction of the operands. This
allows the flexible shifted operands available only for Operand2 to be
applied to the other operand; their behaviour is otherwise identical.

The Carry flag is set by these instructions if no borrow is needed
from the next word in a multi-word subtraction. The SBC and RSC
instructions would normally follow to implement the borrow if required.

Here are some typical uses of the SUB and SBC instructions:

SUB rO, rl , r2 ; rO .- rl - r2

SUB rO , rl , #1; rO . - rl - 1

SBC rO , rl , r2 ; rO .- rl-r2 + Carry flag - 1

76 The ARM6 integer instruction set

4.4.7

SUB rO, rl, r2 , ASR #16 ; rO . - rl - (r2 ASR
#16)

SUBS r4, rO, r2 ; 64 - bit subtraction, stage one
SBC r5, rl , r3 ; r4 , r5 : = rO , rl - r2 , r3

The reverse subtract instructions are important when we want to
subtract something.from a constant, rather than the other way around; for
example:

RSB

RSC

rO, rl, #42; rO : = 42 - rl

rO, rl , r2 ; rO := r2 - rl + Carry flag -
1

A special case of this, subtracting from zero, is useful because it
allows a signed value to have its sign reversed, leading to the following
implementation of the 'absolute value' function:

MOVS rO , rO

RS BM I rO, rO , #0

set the flags
(particularly N)
if negative , rO : = 0 - rO

The reverse subtractions are also useful when it is necessary to shift
the first operand of the subtraction, for example:

RSB r2, rl , rl, LSL #3 ; r2 .- (8 * rl) - rl,
; that is 7 * rl

Logical data processing instructions

AND, EXCLUSIVE OR, OR

AND{cond}{S} Rd , Rn , Op2 Rd : =Rn AND Op2

EOR{cond}{S} Rd, Rn , Op2 Rd: =Rn EOR Op2

ORR{cond}{S} Rd , Rn , Op2 Rd : =Rn OR Op2

The binary logical operator instructions perform bitwise logical opera­
tions on (unsigned) 32-bit values. The Boolean operators AND, OR and
EXCLUSIVE OR (EOR) are supported. The presence of the S suffix causes
the condition code flags to be updated by the result, but note that the
overflow flag V is never affected by logical instructions. The Carry flag C
is set to the carry out of the shifter, so it is unaffected if the second oper­
and is an unshifted register or a constant in the range 0--0xFF.

The AND, EOR and ORR instructions are frequently used to mask,
invert and set bits respectively. These instructions have wide-ranging
applications, as the following examples demonstrate:

AND

ANDCSS

MOV
MOV
ANDS

Data processing instructions 77

rO , rO, #OxFF ; mask off most
; significant 24 bits

rO , rl , r2, ASR r3; if Carry flag set
then

rO , #Ox55
rl , #Oxaa
r2, rO , rl

rO : = rl AND (r2 ASR r3)
followed by setting
NZC flags

rO
rl
r2

. -

. -

. -

55
aa

0'

hex
hex
N : = 0 , Z : = 1

Applying the EOR operation to the same argument twice clears
every bit, so this is another way of zeroing a register:

EORS rO , rO , rO ; rO : = 0 , N : = 0 , Z : = 1

We can also construct difficult constants (those which are too big for
the 8-bit immediate field) by combining bits using ORR:

Bit clear

MOV
ORR

rO , #Oxff ; rO : = Ox ff
rO , rO , #OxffOO ; rO := Oxffff

BIC{cond}{S} Rd, Rn , Op2 Rd : =Rn AND NOT Op2

The Bit Clear (BIC) instruction performs the composite logical function 'a
AND (NOT b)' which is useful for clearing bits: for each bit set in Rm the
corresponding bit in Rn will be cleared. The presence of the S suffix
causes the condition code flags to be set on the result, but remember that
the overflow flag V is never affected by logical instructions. The Carry
flag is again set to the carry output from the shifter, so it is unaffected if
the second operand is an unshifted register or a constant in the range 0-
0xFF.

We might write:

BIC rO , rl , #3 rO : = rl AND NOT 3
that is rO := rl AND
OxFFFFFFFC

The Assembler will convert BICs into ANDs during assembly where
appropriate, for example AND rO, rl, #xFFFFFF will assemble to BIC rO,
rl, #xFFOOOOOO. Similarly, the ARM C compiler correctly optimizes
expressions which perform the 'AND NOT' function to a single BIC
instruction, rather than generating two separate instructions. Here is an
example which demonstrates this:

78 The ARM6 integer instruction set

4.4.8

int andnot(int a)

which compiles to:

BIC

int c;

c=a & -Ox80;
return c;

rO , rO, #128

MOV pc , lr

Arithmetic and logical comparison data processing
instructions

Compare and Compare negative

CMP{cond} Rn , Op2

CMN{cond} Rn, Op2

Flags :=Rn SUB Op2

Flags : =Rn ADD Op2

The arithmetic compare instructions are functionally equivalent to the
ADD and SUB instructions but do not write the result; they merely set the
flags on the basis of the result and then discard it. The S suffix is not
required because it is always implied for these instructions (they would
do nothing at all otherwise). The flags are set on the result of comparison
operations in the same way as for arithmetic instructions (see ADD).

Although comparisons are central to many programming tasks the
need for them is somewhat reduced when programming the ARM
because of the conditional features of all instructions. In particular, com­
parisons against zero are cheap since setting the S bit of a data processing
instruction and then making the following instruction EQ conditional
requires no discrete comparison.

It is even possible to perform a comparison conditionally.

Comparison examples in Assembler

Here are some examples of typical comparisons:

CMP
MOVEQ

r2, #23
r2 , #45

r2==23?
if so , make r2:=45

Data processing instructions 79

CMP rO , #0 ; test rO .. r3 -- 0

CMPEQ rl , #0

CMPEQ r2 , #0

CMPEQ r3 , #0

MOVEQ r4 , #12 r4 . - 12 if all

rO .. r3 held 0

MOVNE r4 , #23 r4 . - 23 if any were

non - zero

ORRS r4 , rO , rl faster version of

the above

ORREQS r4 , r2 , r3
MOVEQ r4 , #12 r4 . - 12 if all rO . . r3

held O

MOVNE r4, #23 r4 . - 23 if any were

non - zero

CMN rl , r2 if (rl + r2) -- 0

MOVEQ rO , #0 then rO . - 0

MVNNE rO , #0 else rO . - -1

Conditional execution example: Euclid's GCD algorithm

The following C code fragment is taken from an implementation of
Euclid's GCD algorithm in the ARM Software Development Toolkit
Cookbook:

while (a ! = b)

if (a > b) a - = b ;

else b a ;

Without the use of conditional instruction execution this might be
naively coded as follows:

gcd CMP a , b
BEQ end
BLT less than -
SUB a , a , b
B gcd

less_ than SUB b , b , a
B gcd

e nd

A considerably more compact implementation may be achieved
using conditional instruction execution, for example as follows:

80 The ARM6 integer instruction set

gcd CMP

SUBGT
SUB LT
BNE

a , b

a , a , b

b, b, a
gcd

Compiler optimization using conditional instructions

Below is a simple comparison example written in C which demonstrates
the compiler's use of in-line conditional instructions:

int cmptst(int a , int b)

int c ;
C= (a==b) ;

return c ;

This compiles under armcc to the following sequence of Assembler
instructions:

CMP rO , rl test
MOVNE rO , #0 not equal , return false
MOVEQ rO, #1 equal, return true
MOV pc, lr return

This sort of optimization of simple conditional choices is widely used by
the compiler.

Logical compare instructions

TEQ { cond} Rn , Op2

TST { cond} Rn, Op2

Flags:=Rn EOR Op2

Flags:=Rn AND Op2

The logical compare instructions are derived from the AND and EOR
instructions in just the same way as the arithmetic compares are derived
from ADD and SUB; they perform the relevant operation and set the flags
on the result, discarding the result itself. The S suffix is not required
because it is always implied for these instructions (they would do noth­
ing at all otherwise).

The V flag is unaffected by logical compare instructions; the C flag is
preserved unless a shift is used, in which case it is set to the shifter carry
output. The Z and N flags are set if the result is all zeros or the top bit is
set, respectively.

Below is an example which uses a CMP, which sets all flags, fol­
lowed by a TEQ, which only sets some, to perform a fairly common func­
tion: it replaces non-printable ASCII characters with a period:

CMP
TEQ
MOVLS

rO, #31

rO, #127
rO, # " ."

Data processing instructions 81

test rO <= 31?

test rO == 127?
if either then rO : = "."

This is a particularly compact example; overlapping of comparison
results can often trim a few instructions from a complex series of tests.

To demonstrate TST, here is an example which checks the alignment
of an address and returns a logical result:

TST
MOVEQ
MOVNE

rl, #3
rO , #1
rO , #0

Multiplication instructions

MLA{cond}{S} Rd , Rm, Rs , Rn

MUL{cond}{S} Rd , Rs, Rm

is rl word aligned?
rO : = 1 if so
otherwise rO := 0

Rd := (Rm*Rs)+Rn

Rd : =Rm*Rs

The multiply instruction MUL performs a 32-bit integer multiplication on
unsigned or 2's complement operands; it yields the least significant 32
bits of the product of the two operands. MLA adds in a third operand to
the product before returning the result; this saves a cycle which would
otherwise be needed for a separate ADD instruction. In both cases the N
and Z flags are set on the result and the C and V flags are set to meaning­
less values .

There are some restrictions on combinations of registers which may
be used with this instruction, notably that Rd and Rm may not be the
same and Rd may not be rlS (the program counter): consult MUL in
Appendix A for more information.

Here are some multiplication examples:

MUL

MUL
MUL

rO, rl , r2

rO , rl, rO
rO , rO , rl

rO . - rl * r2

rO .- rl * rO (valid)
INVALID, Rd=Rm=r0

The second of these shows the restrictions on register use quite
graphically, since it ought to give the same result. In fact only the first
form is allowed.

The MLA instruction allows an addition to be performed at the
same time very efficiently:

MLA rO , rl, r2, r3 ; rO : = (rl * r2) + r3

In fact this function is particularly useful when indexing through
arrays, where we might instead write the following to make it a little
clearer:

82 The ARM6 integer instruction set

4.4.9

MLA ptr, index, stride, base ; ptr : = (index *
; stride) + base

This is a very general and potentially rather time-intensive solution;
for small strides the same effect can be achieved more efficiently using
shifts.

A multiplication followed by an addition is a sufficiently common
requirement that the armcc compiler optimizes for it specifically, as can
be seen in the example below:

int mulints(int a , int b , int c)

which compiles to:

int d ;

d=(a *b)+c ;
return d ;

MLA

MOVS
rO , rl , rO , r2 ; perform r0 :=rl *r0+r2

pc , lr ; return , setting flags

Notice that the compiler orders the MLA parameters rather counter­
intuitively; this is to overcome the restrictions on the destination register
noted above, since the compiler wants to return the result in RO; fortu­
nately the multiplication stage is commutative.

Data movement instructions

Address

ADR{cond}{L} Rd , expression Rd: =expression

(pseudo instruction)

ADR allows address constants to be loaded into registers for use in refer­
ring to register-based variables (that is those which are referred to using
'base+index' addressing modes: see LDR/STR, below). Two variants are
supported; ADR for short (that is local) references, and ADRL for long
references; they are assembled to one or two instructions respectively,
chosen by the Assembler from ADD, SUB, MOV and MVN.

The ADR (load address to register) instruction is a pseudo-instruc­
tion provided by the Assembler rather than a true ARM instruction; it is
frequently used both in real ARM programming and in the examples in
this book.

For example, we might write the following to load the address of
'BasePtr' into r3:

4.4.10

Data processing instructions 83

BasePtr DCD 0

ADR r3, BasePtr

Here ADR is used to address a table in a code fragment from a deci­
mal numeric display routine:

ADR rO, table load pointer to
table in rO

ADD rO, rO, rl, LSL #2 ; rO . - (table + (rl

table DCD 1 table of decimal
constants

DCD 10
DCD 100

Single register data movement instructions

Load register and store register: basic forms

LDR{cond}{B} Rd, address{ ! }

LDR{cond}{B} Rd , =expression

STR{cond}{B} Rd , address{!}

Rd:=contents of
address

Rd : =expression

contents of
address : =Rd

* 4))

The LOR and STR instructions load and store the contents of single regis­
ters to and from memory. Along with the multiple register data move­
ment instructions LDM/STM and swap SWP these are the only ARM
instructions which interact with main memory. All other instructions use
values in registers.

Either a whole 32-bit word or a single byte may be addressed using
these instructions according to the presence or absence of the B suffix.
Because ARM addresses are specified in bytes the address used for word
operations must be word aligned, that is have its two least significant bits
both zero; for byte operations the little-/big-endian status of the CPU
affects which byte is addressed.

Many different addressing modes are available for these instruc­
tions: they fall broadly into three groups: pre-indexed, post-indexed and
relative (discussed in the next section). Table 4.3 presents a summary of
the different forms for pre- and post-indexed addressing.

• Rn is any register number 0 .. 15 and holds the base address
• Rm is any other register except RlS and holds a signed address

84 The ARM6 integer instruction set

Table 4.3 Pre-and post-indexed addressing

Mode Effective address Indexing

[Rn] Rn none

[Rn,± expression] Rn ± expression Pre-indexed

[Rn, ±Rm] Rn±Rm Pre-indexed

[Rn, ± Rm, shift count] Rn± (Rm shifted by count) Pre-indexed

[Rn],± expression Rn Post-indexed

[Rn], ±Rm Rn Post-indexed

[Rn],± Rm, shift count Rn Post-indexed

increment or offset
• expression is an expression evaluating to a result in the range -4095

to +4095 (ie sign plus 12 bits)
• shift is one of LSL, LSR, ASR, ROR or RRX
• count is a constant in the range 1..31 representing the shift count,

which may not come from a register. RRX takes no count; it always
shifts one bit only

Pre-indexed addressing modes

In the pre-indexed addressing modes a register Rn must be specified for
use as a base during indexing. This register may then be used in one of
several ways:

• To reference the variable without modification: the [Rn] form
• With an added offset: the [Rn, ±expression] form
• With a second index register added in: the [Rn,± Rm] form
• Or with the index register scaled by shifting before use: the [Rn, ±

Rm shift count] form.

Here are some examples of the basic addressing modes:

LDR

LDR

STR

rO, [rl] rO .- value at address

in rl

rO , [rl , #132] rO :=value at (rl + 132)

rO , [rl. r2] contents of (rl + r2)

. - rO

LDR

Data processing instructions 85

rO , [rl , r2 , LSL#2] ; rO := value at
; (rl + (r2 * 4))

The fourth example above demonstrates the use of a shifted index
register: in this instance r2 is shifted left two places, multiplying it by
four, before being added to the base address in rl to form the final
address. This calculation might be used to access the r2th component of a
string of words based at rl.

Base register write-back

The pre-indexed addressing modes allow the base register to be option­
ally updated after use with the new value just calculated; this is known as
'writing back' the base. The syntax for base write-back is to append an
exclamation mark '!' to the instruction. Subsequent uses of the same
instruction will employ the updated value of the base, thereby maintain­
ing the continuity of a sequence of references. This is a frequent require­
ment where, say, the data being manipulated is a table of values.

Below is a slightly contrived example which exploits some of these
features. This routine initializes a table backwards, placing 0 in the last
entry, 1 in the previous and so on.

wackbirds ADR rO , table - end load rO with table_ end

ADR rl , table load rl with table
(start)

MOV r2 , #0 initialize loop counter
loop STR r2 , [rO , #-4 J ! ; store r2 at current

position
ADD r2, r2 , #1 increment loop counter
CMP rO, rl got to the end?

BNE loop no , go round again

ALIGN
table % table _ length*4

table end -

Post-indexed addressing modes

Post-indexed addressing modes allow essentially the same variations on
how the base and optional index are used, but always perform the calcu­
lation after the operation and always write back the result (so no exclama­
tion mark is required). Syntactically these instructions are distinguished
by placing the base register alone within square brackets and then
appending any index offset calculations after a comma. Here are some
examples:

LDR rO , [rl] , r2 rO : =[rl] , then
rl : = rl + r2

86 The ARM6 integer instruction set

STR

ADR

ADR

MOV

loop STR

ADD

CMP
BNE

ALIGN

table %

table_ end

rO , [rl] , #20

rO , table
rl , table - end
r2 , #0

r2, [rO] , #4

r2 , r2 , #1

rO , rl
loop

table_ length *4

[rl) :=rO, then

rl : = rl + 20

Subtly different from

the routine shown in the

previous section .

The third example shown above is modified from an earlier exam­
ple to show the use of post-indexed addressing modes; this version fills
its table in the natural order, placing a zero in the first table entry, a one in
the next and so on.

Load register and store register: relative addressing forms

To assist with the addressing of literals the Assembler supports a number
of syntactical short cuts which save time and improve legibility. They all
exploit the ability of the ARM to support PC-relative addressing. Table 4.4
summarizes the various relative addressing modes.

Table 4.4 Relative addressing modes

Mode Effective address Indexing

Rn, PC-relative expression Result of expression PC-relative

Rn, Register-relative expression Rn± field_offset Rn-relative

Rd, =expression PC± literal_offset PC-relative

For example, a symbol may be invoked by name leaving the Assem­
bler to resolve the addressing, for example:

LDR r5 , ThreeCubed; load r5 with symbol

ThreeCubed DCD 27 constant placed h e r e

In this case an instruction of the form LOR rS, [PC, #constant] is gener­
ated, or an error is generated if the symbol definition is out of range.

The Assembler provides two directives, the characters /\ and #,

Data processing instructions 87

which may be used to establish data structures which are 'based on', that
is are addressed relative to, a particular register; the example below illus­
trates this:

0' rl define 3D point

structure

XCoord # 4 xcoord at rl+O

YCoord # 4 YCoord at r1+4
zcoord # 4 ZCoord at r1+8

ADR rl , Pointl initialize rl to Pointl
B Common Code -

ADR rl, Point2 initialize rl to Point2

Common - Code LDR r2 , YCoord r2 . - YCoord , that is r2

. - [r1+4)

Here a data structure suitable for representing three-dimensional
points is defined as a structure based on register rl. Subsequent refer­
ences to components of the data structure may then be made using LDR.
In other words, the Assembler translates the reference to YCoord into
LDR r2, [rl, #4] automatically.

LOR literal syntax

A special case of LDR syntax is supported to allow literals to be loaded
directly. The form of LDR with the syntax LDR Rn, =expressi on is
used and the Assembler generates an LDR with a PC-relative address.
This address points to the literal result of evaluating the expression which
is stored in a nearby 'literal pool' generated by the Assembler.

LDR rO , =0x12345678 ; rO loaded from

; literal pool

Comparative example: block copying

We can use the LDR and STR instructions to develop a simple example
program which copies a four-word block of data from the address in r7 to
the address in r8. Here it is:

LDR rl , [r7 , #OJ
LDR r2, [r7, #4)

LDR r3 , [r7 , #8)

LDR r4 , [r7 , #12)

STR rl , [r8) , #4
STR r2 , [r8) , #4

STR r3 , [r8] , #4

STR r4 , [r8), #4

88 The ARM6 integer instruction set

4.4.11

4.4.12

This brute force approach to block copying exploits four registers
which it first loads and then stores, taking advantage of both pre-index­
ing and post-indexing. The routine has the unusual property that r8 is left
pointing beyond the destination and r7 remains unaltered. The routine
appears here mainly to allow it to be contrasted with the implementation
using the LDM/STM multiple-register instructions to be described below.

Swap

SWP{ cond} {B} Rd , Rn , [Rbase] Rd := [address] ,
[address]: =Rn

The data swap instruction swaps a byte or word between a register and
memory, locking the memory bus in the process to preserve the atomicity
of the operation (where supported by external hardwa!"e). This operation
is useful in multiprocessor hardware environments where it forms the
basis of 'semaphore' functions required by most multi-tasking operating
systems.

The source Rn and destination Rd are both registers, the memory
address is given by the contents of the third register Rbase. The SWP
instruction then writes the contents of Rn to the address given by Rbase
and the previous value at that address is placed in Rd. For example:

ADR r2, &8000FFE3 initialize r2

SWP rO, rO, [r2] swap RO with memory

at address in r2

SWP rO , rl, [r2] swap Rl to memory &

return old value in RO

Multiple-register data movement instructions

LDM{cond}mode Rn{ ! } ,{ reg_ list } {A} reg_ list: = [addresses]

STM{cond}mode Rn{!}, { reg_ list } {A} [addresses] :=reg_li st

The multiple-register data movement instructions are a powerful exten­
sion of the single-register instructions. They transfer a set of registers,
anywhere between one and all 16 of them, between the CPU register bank
and memory. To cater for the need to specify up to sixteen registers the
register set is expressed by 16 bits of the instruction word, one bit per reg­
ister. The register list must be enclosed in braces (that is the braces do not
signify optional parameters as they do elsewhere in this book) except
where the Assembler 's 'register list' feature is exploited: see Chapter 3.

86 The ARM6 integer instruction set

STR

ADR
ADR

MOV

loop STR

ADD

CMP

rO , [rl], #20

rO , table
rl , table - end
r2, #0

r2 , [rO] , #4

r2, r2, #1

rO , rl

[rl] :=rO, then

rl:= rl + 20

Subtly different from

the routine shown in the

previous section.

Data processing instructions 89

These instructions can automatically build data structures in mem­
ory from a set of registers, for example to push and pop groups of regis­
ters to and from a stack. Even apparently complex problems such as
dealing with discontinuous lists of registers are supported by these
instructions, by virtue of the 'one-bit-per-register' format of the instruc­
tion word; registers are always loaded and stored in the same order,
regardless of which registers are involved. Multiple-register instructions
are.executed more quickly than the equivalent sequence of single-register
instructions on most ARM-based hardware through reduced overheads
and the use of fast 'paged mode' access to Dynamic RAMs.

How the multiple-register instructions are used

For any multiple-register instruction the memory area to be used must be
addressed by a base register, Rn, just like the single-register (LDR/STR)
instructions. The differences are in the treatment of registers other than
the first in the set: the base address can be incremented or decremented
automatically for each register in the list according to the particular
instruction syntax used. The presence of an exclamation mark'!' suffix to
the instruction causes the base address to be written back to Rn after
updating, to allow it to be re-used subsequently.

The choices in using these instructions are to decide whether the
data structure in memory is going to grow upwards by memory address or
downwards and whether the base address is going to be adjusted before or
after the load or store operation occurs. It is worth noting that mis­
matching these instructions can result in catastrophic 'out-by-one' pro­
gramming problems; two alternative syntaxes are supported by the
Assembler in an effort to minimize the scope for confusion.

Using multiple-register transfer instructions to implement stacks

A data stack which is frequently used in ARM programming grows
downwards in memory, that is the 'top' of the stack is the lowest address
occupied by a stacked value. To add a new value (push) we must decre­
ment the stack pointer to address the next vacant location and then store
the value at that address. To retrieve (pop) the top value we load it from
the address given by the stack pointer and then increment the stack
pointer to point to the next value.

The ARM multiple-register instructions support this kind of stack
directly; they also support the alternative style where the stack pointer
points to the first vacant location rather than the last occupied one. These
differences correspond to the difference between adjusting the offset
before or after the load or store, as noted above. These instructions can
also support stacks which climb upwards in memory rather than down­
wards, similarly noted above.

A two-letter suffix is used to tell the Assembler which form of index-

90 The ARM6 integer instruction set

ing is required and two alternative syntaxes are allowed:

• FD, ED, FA and EA stand for Full Descending, Empty Descending,
Full Ascending and Empty Ascending. 'Full' corresponds to the 'last
occupied' style described above, whilst 'Empty' corresponds to the
'first vacant' style.

• IA, IB, DA and DB stand for Increment After, Increment Before, Dec­
rement After and Decrement Before.

The first syntax is designed to be used when stacks are being imple­
mented and describe the type of stack and its direction; the second syntax
represents the functionality of the instruction directly and so is suitable
when not using these instructions for stacks.

The effects of these instruction mnemonics are summarized in Table
4.5.

Table 4.5 Possible load and store multiple combinations

Name Stack Other Lbit Pbit Ubit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Register load/store order in LDM/STM instructions

It is important to appreciate that registers are always placed in memory
so that the lowest numbered register always appears at the lowest
address, regardless of the addressing style used. This presents no diffi­
culty if the same registers are unstacked as had previously been stacked.
However, to stack multiple registers and then unstack them one at a time
requires some care; consider these two examples:

Data processing instructions 91

push_ two_ EA STMEA r2 ! , {rO , rl} push rO,rl "empty

ascending"

pop_ one LDMEA r2 ! , {rl} rl pops first
pop_ another LDMEA r2 ! , {rO} and rO second

push_ two_ FD STMFD r2 ! , {rO ,rl} push rO,rl "full
descending"

pop_ one LDMFD r2 ! , {rO} rO pops first
pop_ another LDMFD r2 ! , {rl} and rl second

In the first case the two registers unstack in one order, and in the
second they unstack in the opposite order; these two cases are not incon­
sistent: the first stack is growing downwards and the second upwards.
The most important thing to remember is that using the same instruction
syntax on the same registers for both LDM and STM will ensure success.

100CH 100CH

Rn 1000H R1 1000H

OFF4H OFF4H

2

100CH Rn 100CH

R7 R7

R5 R5

R1 1000H R1 1000H

OFF4H OFF4H

3 4

Figure 4.7(a) Post-incremented addressing

92 The ARM6 integer instruction set

100CH 100CH

R1

Rn 1000H 1000H

OFF4H OFF4H

2

Rn R? 100CH

RS
1--~~~~~~---1

RS

R1 R1

1000H 1000H

OFF4H OFF4H

3 4

Figure 4.7(b) Pre-increment addressing

100CH

Rn 1000H 1000H

R1

OFF4H OFF4H

2

100CH 100CH

1000H R7 1000H

RS RS

R1 R1

OFF4H Rn OFF4H

3 4

Figure 4.7(c) Post-decrement addressing

Data processing instructions 93

100CH 100CH

Rn 1000H 1000H

OFF4H R1 OFF4H

2

100CH 100CH

1000H 1000H

R7

R5 R5

R1 OFF4H Rn R1 OFF4H

3 4

Figure 4.7(d) Pre-decrement addressing

Multiple-register instruction examples

Here are some of the possible ways in which the LDM and STM instruc­
tions might be used in real programs. First, let us consider the implemen­
tation of the four-word block copy which we introduced in the previous
section on LDR/STR; here is the new version using multiple-register
instructions:

LDMIA

STMIA

r7 , {rl -r4}

r8 ! , {rl -r4 }
load rl-r4 from [r7]

store rl - r4 at [r8] ,
writing
back r8 to reflect

final address

This implementation is both six instructions shorter and nine cycles
faster than the previous version, clearly demonstrating the benefits of the
multiple-register instructions.

We can also re-visit the 30 data point which we used in an earlier
example. Instead of loading each of the three parts of the point's coordi­
nates in using individual LOR instructions we can simply use a single
multiple-register load, as follows:

94 The ARM6 integer instruction set

0 , rl

XCoord # 4
YCoord # 4
ZCoord # 4

ADR rl , Pointl

define 3D point

structure

XCoord at rl+O

YCoord at r1+4

zcoord at r1+8

initialize rl to Pointl

hopefully Pointl
gets assigned

before doing this :

LDMIA rl , {r3 , r4, r5} ; load r3 - r5 with x , y, z

Few would dispute that this is more concise; it is also likely to be
several cycles faster than individual loads of each register, although the
exact timing is system-specific.

PC(r15) and the '"' suffix

Consistently, the PC (r15) is treated like any other register by the multiple
register transfer instructions and this has some important implications.
Registers included in the list are always transferred in the order lowest
first, highest last. This ensures that if r15 is included in the list it is always
the last register to be transferred. Note that the value in r15 will be
advanced by + 12 from the address of the instruction causing the transfer.

The " suffix can be employed with these instructions but only if the
instruction will be executed in a non-user CPU mode. If it is included
then its interpretation depends on whether r15 is included in the register
list:

• LDM with r15 included and " present
SPSR_mode is transferred to CPSR at the same time as r15 is loaded.

• STM with r15 included and " present
The User mode registers specified by the instruction are transferred,
rather than those for the privileged mode in which the instruction is
executed. This is useful when an operating system wishes to save
the user state, for example when process switching. Base write-back
must not be used in this circumstance.

• LDM or STM with r15 not included but " present
In both cases the User Mode registers are used instead of the current
mode registers, just as above. Note that a banked register must not
be accessed in the cycle after this instruction, so it is best followed
by a NOP for safety.

Base register restrictions

The PC (r15) must not be used as the base register with these instructions;

4.4.13

Data processing instructions 95

it is difficult to imagine a use for this instruction even if it were allowed.
If the base register is included in the register list then LDM will

overwrite it; STM will store the 'wrong' (unmodified) base value if it is
the first register in the list. Otherwise it will store the correct value.

Program Counter and Program Status Register
instructions

Branch and Branch with link

B{cond} label

BL { cond} label

PC : = address of label

r14 : = PC-4 , then PC:=
address of label

The Branch instruction B and the related Branch with Link BL are used to
divert the flow of instruction execution from its normal sequential
progress through increasing addresses. Like all other ARM instructions
the branches are conditional, so all 15 different conditional branches are
available to these instructions. The default condition, as for other instruc­
tions, is 'always' so as to reduce unnecessary typing.

Both variants of branch instruction include a 24-bit signed 2's com­
plement offset which is shifted left two bits (that is multiplied by 4), sign
extended to 32 bits and added to the PC. The field therefore gives a word­
multiple relative address to which execution will be transferred.

The 24-bit size of the offset field means that branches are restricted
to a ±32 Mbyte range. It is therefore possible for some addresses to be out
of range of a single branch instruction, although this is unlikely in reality.
If a very long (that is >32 Mbyte) branch is required the following instruc­
tion syntax allows long branches:

LDR PC , =long_ target ; branch by loading PC
; with a literal

Because the ARM CPU pre-fetches instructions the branch offset
must take into account the fact that the PC is 2 words (8 bytes) ahead of
the current instruction. The Assembler adjusts the offset accordingly, but
it is still potentially confusing when reading the raw object code; any
good Disassembler would resolve such address corrections.

Here are some examples of the branch instructions:

B

CMP

BEQ

elsewhere

rl , #0

fred

(always) goto
'elsewhere '

if rl==O then
goto label ' fred'

96 The ARM6 integer instruction set

here BAL

ADDS

BLCC

here

rl , rl, #1

somewhere

endless loop

rl : = rl + l, set flags

call 'somewhere ' if

rl was not &FFFFFFFF

It is important to keep in mind that branches may also be achieved
using data processing instructions which update rl5 directly by using it
as the destination register, for example MOV, ADD etc. For example, the
following instruction sequence has superior functionality to BL, but
requires two separate instructions:

MOV

ADD

LR, PC

PC, ...

; copy PC to LR (rl4)

; adjust PC to new address

Returning to an earlier issue, here is an example of how a mutually
exclusive 'semaphore' interlock using the SWP instruction might be pro­
grammed:

ADR rO, semaphore

MVN rl , #0

loop SWP rl, rl , (rO)

TEQ rl , #0

BNE loop

MOV rl, #0

STR rl , [rO]

Branch with link

make rO point at

semaphore

non zero to claim it
(once only)

attempt acquisition

see if we got control

no, spin once more (rl

will still not be zero)

these operations

are atomic as far
as the rest of the

system is concerned

release : zero means

not claimed

semaphore now
claimable again

The BL instruction saves the PC (r15) in the Link register (r14) of the cur­
rent register bank to allow a branch to a subroutine to return to the
instruction after it upon completion. The CPU adjusts the PC value saved
in r14 to take account of pre-fetching and so stores the correct address of
the following instruction. Note that the CPSR (containing the flags) is not
saved by this instruction, so a separate MRS instruction (see Move pro­
gram status register on page 97) would be needed if this is required.

Here are some example subroutine branches:

4.4.14

Data processing instructions 97

BL Subroutine call ' subroutine'
return here using
MOV pc, lr

ADDS
BLCS

rl , rl, #1
was_minus_one

rl := rl + l , set flags
call 'was_minus_one '
if C=O
ie if rl was OxFFFFFFFF
beforethe ADDS

Program Status Register transfer instructions

Move program status register

MRS{cond} Rd , psr

MSR{cond} psr , Rm

MSR{cond} psrf , Rm

MSR{cond} psrf,#expression

Rd : =psr

psr : =Rm

psr_ flags : =Rm

psr_ flags :=expression

These instructions allow the contents of the Current or Stored Program
Status Register (CPSR/ SPSR) to be transferred between the status register
in question and a general register. The format of the CPSR/SPSR is shown
in Figure 4.8.

The symbols CPSR or CPSR_all, and SPSR or SPSR_all are used to
indicate that all data bits of the current or stored PSR are to be transferred;
these options are shown as psr in the syntax definitions above.

Similarly, CPSR_flg or SPSR_flg are used to indicate the flags alone
are to be transferred; these options are shown as psrf in the syntax defi­
nitions above.

flags
.--- -----, r-----7'

31 30 29 28 27

Overflow

Carry/Borrow/Extend

Zero

'------- Negative/Less than

control

7 6 5 4 3 2 0

I
1

L Mo~e b;ts

FIO disable

'----- - --- !RO disable

Figure 4.8 Format of the program status registers (PSRs)

98 The ARM6 integer instruction set

In the ARM6 CPU the PSRs are organized as three groups of bits: the
flags (bits [31..28]), the interrupt masks (bits [7, 6]) and the mode bits
([4 .. 0]). Future ARM CPUs may use the remaining reserved bits [27 .. 8]
and bit [5] , so it is important to observe two rules when using these
instructions:

• All currently reserved bits must be preserved when altering the
PSR.

• The value returned by currently reserved bits must not be relied
upon when testing other bits.

In User mode all PSR bits may be read but only the four flag bits N,
Z, C and V may be written; in privileged modes all bits may be read and
written.

The following code fragment demonstrates the correct 'read-mod­
ify-write technique which should be employed; in this example to per­
form a mode change:

MRS Rtmp , CPSR ; Rtemp . - CPSR
BIC Rtmp , Rtmp , #&lF ; clear mode bits
ORR Rtmp , Rtmp , #new_mode; OR in new_mode
MSR CPSR , Rtmp ; CPSR . - Rtemp

Here are some examples of PSR transfer instructions which may be
executed in User mode:

MSR CPSR_ all , R3 CPSR[31 : 28] .- r3[31 : 28]

MSR CPSR_ flg , R3 CPSR[31 : 28] . - r3[31 : 28]

MSR CPSR_ flg , #&AOOOOOOO
; set Z, V and clear N, C

The following examples demonstrate the difference in effect when
instructions are executed in privileged modes:

MSR CPSR_ all , R3 CPSR[31 : 0] : = r3[31 : 0]

MSR CPSR_ flg , R3 CPSR[31 : 28] : = r3 [31:28]

We can always read the contents of the CPSR, in any mode, as fol­
lows:

MRS rO , CPSR ; r0 [31 : 0] : = CPSR[31 : 0]

Status transfer instructions involving the SPSRs may only be exe­
cuted in privileged modes, such as the following:

MSR SPSR_ all , rO SPSR<mode>[31 : 0] . ­
r0[31:0]

4.4.15

Data processing instructions 99

MSR SPSR_ flg, rO SPSR<mode>[31 : 28] . ­
r0[31 : 28]

MRS rO, SPSR

Coprocessor instructions

Coprocessor data operations

r0[31:0] : =

SPSR<mode>[31:0]

CDP{cond} p# , exp_ l , cD , cN , cM{ , exp_2} ; cD : =Op(cN , cM)

The coprocessor data operation instructions cause the opcode encoded in
the two expressions to be passed to the given coprocessor number p# to
cause it to perform the operation specified by the two expressions exp_l,
exp_2 on coprocessor registers cN, cM and store the result in coprocessor
register cD.

This class of instructions is the coprocessor equivalent of the ARM
data processing instructions. Coprocessors may have up to 16 registers of
their own which are addressable by the ARM (4-bit fields are used) and
these instructions specify three coprocessor registers to allow dyadic
(two-operand) instructions to give a result in a third register.

Floating-point instructions which perform dyadic operations, such
as ADF (Add floating), are assembled to one of these instructions auto­
matically. Here is a typical CDP instruction in its undisguised form:

CDPEQ p2, 5, cl, c2 , c3, 2 ; If EQ then

coprocessor 2 to do
operation #5 variant 2
on cr2 and cr3 giving crl

Load and store from coprocessor

LDC{cond}{L} p# , cD , address

STC{cond}{L} p#, cD , address

Load CP regs

Store CP regs

The coprocessor load/ store instructions cause coprocessor number p# to
transfer data between the single register crD and memory at the address
specified. The optional L suffix selects between 'long' and 'short' trans­
fers; the meaning of this field is coprocessor-specific.

This class of instruction is the coprocessor equivalent of the ARM
single-register data transfer instructions. A limited set of basic addressing
modes are available to coprocessor load/ store instructions; they are sum­
marized in Table 4.6.

The first of these addressing modes is a special Assembler syntax for
the pre-indexed mode properly written as ' ... [PC, #expression]'. The

100 The ARM6 integer instruction set

Table 4.6 Basic addressing modes for coprocessor load/store instructions

Mode Effective address Indexing

expression Result of expression PC-relative

[Rn] Rn None

[Rn, #expression JI!) Rn ± expression Pre-indexed

[Rn],#expression Rn ± expression Post-indexed

expression is limited to the range -1020 to +1020 and must be word­
aligned, that is divisible by four. Refer to the section concerning the LOR/
STR instructions for further information on these addressing modes.

The floating-point load/ store instructions, such as LDF (Load float­
ing), are assembled to one of these instructions automatically. Here are
some typical raw LDC and STC instructions:

LDC

STCEQL

pl, c2, table load c2 of coprocessor
#1 from ' table '

(PC - relative)

p2, c3, [r5 , #24] !; conditionally store

c3 of coprocessor #2
at [r5]+24 and

update r5 ; long

transfer mode

Coprocessor register transfer instructions

MCR{cond} p#, exp_ l , Rd , cN, cM{,exp_ 2}cX .- Op(Rd)

MRC{cond} p#, exp_ l , Rd , cN , cM{,exp_2 }Rd .- Op(cX)

The coprocessor register transfer instructions allow coprocessor registers
and ARM registers to be transferred freely, optionally performing some
operation before the transfer. Coprocessor number p# is instructed to per­
form an operation by the two expressions exp_l, exp_2 before transfer­
ring the result if the transfer is coprocessor to ARM, or afterwards if the
transfer is from ARM register Rd to coprocessor registers cN and cM.

An important use of these instructions is to communicate the
coprocessor status back to the ARM CPSR flags. When r15 is used as the
destination of an MRC instruction, bits 31..28 of the result overwrite the
CPSR N, Z, C and V flags respectively; all other CPSR bits are unaffected,
as is r15 itself.

Examples of this type of coprocessor instruction include:

4.4.16

4.4.17

Data processing instructions 101

• The floating-point instruction FLT, which converts an integer in an
ARM register into a floating-point value of specified precision and
stores it in the floating-point register specified.

• The floating-point compare instruction CMF which compares two
floating-point values and sets the integer CPU flags according the
result.

Here are some typical examples of raw MCR and MRC instructions:

MCR p6, 0 , r4, c6 ; perform operation #0 of
coprocessor 6 on r4

; and store result in cr6

MRC p3, 9, r3 , cs, c6, 2;

Miscellaneous instructions

Software interrupt

SWI{cond} expression

perform operation #9
variant 2 of
coprocessor 3 on crS
and cr6 giving r3

Enter Supervisor mode

The software interrupt instruction causes the CPU to switch to Supervisor
mode by causing a Software Interrupt trap, as follows: the PC is saved in
r14_svc, the CPSR is saved in SPSR_svc and then the PC is forced to
&00000008. This address will normally have been initialized by the oper­
ating system to be an unconditional branch to a service routine.

The result of the expression is truncated to 24 bits and passed in the
instruction but ignored by the CPU. Typically, the operating system serv­
ice routine will follow back the saved PC value in r14_svc and decode the
expression to perform some service for the user program. A standard con­
vention in current ARM operating systems is to print the ASCII character
in the bottom byte of rO in response to SWI #0. This convention is fol­
lowed in some examples appearing within the book, as well as by the
ARM Software Development Toolkit described in Chapter 3.

Specific coprocessors

ARM also supports general-purpose instructions for passing commands
to, and data to and from, coprocessor devices. Such coprocessors can
extend the instruction set to deal efficiently with data manipulations that
are not part of the integer instruction set. An example of this is the float-

102 The ARM6 integer instruction set

4.4.18

ing-point instruction set.
The ARM floating-point instruction set operates on a variety of data

types which conform to the IEEE 754-1985 standard; increased precision
is the attraction of using a larger data type, but small low-precision data
types are included. The floating-point data types are:

• IEEE single-precision (32 bits)
• IEEE double-precision (64 bits)
• double-extended precision (80 bits)
• packed (binary coded) decimal (96 bits)
• expanded packed decimal (128 bits).

Floating-point instruction mnemonics are provided by the ARM
Assembler for clarity; these in turn generate general-purpose coprocessor
instructions when assembled.

Other coprocessors have also been implemented: the ARM600 and
its derivative the ARM610 have their memory management unit, instruc­
tion and data cache and write buffer all controlled through the use of
coprocessor instructions. The ARM floating-point instruction set is dis­
cussed in detail in Chapter 9, and summarized in Appendix B.

Pitfalls, quirks and restrictions

Data processing instructions: writing to r15

It is legitimate to use the program counter (r15) as the destination for
these instructions, which has the effect of changing the flow of instruction
execution in the same way as a branch instruction (see section Branch and
Branch with link on page 95).

When r15 is the destination but the S suffix is not present, the result
overwrites the contents of r15 without affecting the CPSR. The next
instruction is fetched from the new address in r15 and program execution
continues from there: this allows calculated branches, suitable for switch
or case constructs.

When r15 is the destination and the S suffix is present the result
overwrites r15 and the CPSR is overwritten with the SPSR for the current
mode. This form of the instruction may only be used in non-User modes.

Data processing instructions reading r15

You may use r15 as either of the normal operand registers in a data
processing instruction, but not to specify a register-specified shift
amount. When using r15 as an operand, remember that it normally con­
tains an address advanced by 8 from the address of the current instruc­
tion. However, if the instruction uses a register-specified amount, it will
be advanced by 12 bytes rather than 8.

Data processing instructions 103

Use of r15 (PC) in load/store instructions

r15 (PC) must never be used as Rm, nor as Rn if write-back is specified.
When using r15 as the base (Rn) remember that it contains an address
advanced by 8 from the address of the current instruction.

Effect of CPU endian configuration on byte load/stores

The action of the LOR{B} and STR{B} instructions on the data bus is
affected by the ARM6 CPU byte sex or endianness control signal. The two
possible states, little-endian and big-endian, are discussed in turn below:

• Little-endian configuration:
For byte loads (LORB) the CPU expects data on data bus bits 0[7 .. 0]
for word addresses, data bus bits 15 .. 8 for word addresses plus one
etc. The selected byte is placed in the bottom 8 bits of the destination
register and the high order bits filled with zeros.
For word loads (LOR) plus 1, bits 15 .. 8 of the data from memory will
be placed in bits 7 .. 0 of the register. Bits 31..8 of the register are left in
an undefined state.
For word addresses plus 2, bits 31..16 go to register bits 15 .. 0; regis­
ter bits 31..16 are undefined.
For word addresses plus 3, bits 31..24 go to register bits 7 .. 0; register
bits 31..8 are undefined.
For byte stores (STRB) the data is replicated by the CPU four times
across all data bits 0[31..0].
For word stores (STR) a word-aligned address should be used; the
whole word is presented on the data bus 0[31..0] and is unaffected
even if the address is not word-aligned.

• Big-endian configuration:
For byte loads (LORB) the CPU expects data on data bus bits 31..24
for word addresses, data bus bits 23 .. 16 for word addresses plus one
etc. The selected byte is placed in the bottom 8 bits of the destination
register and the high order bits filled with zeros.
For word loads (LOR) a word-aligned address should be used. For
addresses offset from a word address by 0 or 2 the data will be
rotated into the register so the addressed byte occupies bits 31..24;
addresses offset by 1 or 3 must not be used.
For byte stores (STRB) the data is replicated by the CPU four times
across all data bits 0[31..0] .
For word stores (STR) a word-aligned address should be used; the
whole word is presented on the data bus 0[31..0] and is unaffected
even if the address is not word-aligned.

Effect of configured Abort type on load/stores

.The CPU state after these instruction is affected by the CPU's early/late

104 The ARM6 integer instruction set

4.5

abort configuration. When configured for early aborts any base register
write-back is prevented if an abort occurs. When configured for late
aborts the write-back is allowed and the abort handler must correct for
this before re-executing the instruction.

When configured for late aborts, the pre-indexed and post-indexed
forms of this instruction, where, unusually, Rm and Rn are the same,
must not be used, otherwise the abort handler may not be able to unwind
the instruction.

Data aborts during LDM/STM

Refer to Chapter 5 on aborts and exceptions for information on the behav­
iour of and recoverability from aborted multiple-register transfer instruc­
tions.

Programming examples

Now that we have considered all of the different ARM instructions it is
possible to examine 'real' ARM program examples. The SWI encoding
described above is used extensively in these examples: ARM Ltd's devel­
opment system supports this convention too, so these examples may be
used directly by most readers.

To begin with, here is a routine which calls SWI 0 to help display
the contents of register rO in binary:

printbin MOV rl , #31 number of bits - 1

MOV r2, #1

loop TST rO, r2, LSL rl ; extract a bit

MOVEQ rO , # II 0 II zero?, load ASCII zero
MOVNE rO, # " 1 " one? , load ASCII one

SWI 0 SWI 0 - print char in rO

SUBS rl , rl, #1 decrement number

of bits to go

BPL loop some left? , go round
again

MOV pc, lr return .

Similarly, here is an example routine which generates the contents of
rO in hexadecimal as a sequence of eight ASCII bytes stored starting at the
address in rl :

4.6

\

memhex

loop2

STMFD

MOV

MOV
CMP
ADDGT

ADDLE
STRB
MOV
SUBS

BNE

LDMFD

Summary

Summary 105

sp!, {r0-r2 , rl4}; save registers to
be corrupted

r2 , #8 ; number of bytes
; resulting

rl4, rO, LSR #28 ; capture some bits
rl4, #9
rl4 , rl4 , #"A" - 10 ; get ASCII

alphabetic base
rl4, rl4, # "0"; get ASCII numeric base
rl4, (rl], #1 ; store byte and increment
rO, rO, LSL #4; shift up a nibble
r2, r2, #1 decrement number of

bytes
loop2 some left? , go round

again
sp! , {r0 - r2, pc} ; return (pc :=rl4) & old

; r0-r2

The ARM integer instruction set contains 10 instruction formats, plus the
undefined instructions. The combination of instruction types and condi­
tional execution of instructions means that there is a great flexibility
within the instruction set, despite its relatively small size.

5.1

5
Aborts, exceptions and
interrupts

Introduction

This chapter examines the way the ARM processors deal with unusual
events which occur during program execution, known as 'exceptions'.
Possible sources of exceptions include:

• the processor's 'Reset' input
• software interrupts (using the SWI instruction)
• external interrupts (FIQ/IRQ)
• undefined instructions
• memory management protection faults
• floating-point arithmetic faults

Each kind of exception is considered in tum, giving special attention
to the hardware interrupts FIQ and IRQ.

Floating-point exceptions are discussed along with the floating
point instructions in Chapter 9.

107

108 Aborts, exceptions and interrupts

5.2 ARM processor exceptions

The normal flow of program execution is sequential through increasing
addresses, perhaps with the occasional branch to a nearby label or a sub­
routine branch-with-link. Exceptions occur when the normal flow of exe­
cution is broken, perhaps because of a software interrupt, an illegal
memory reference or to service an interrupt from a peripheral.

If program execution is to resume at the point it was disturbed by
the exception the state of the CPU must be preserved while the exception
is dealt with. Furthermore, it is possible for several exceptions to occur
simultaneously, in which case the processor must reliably be able to deal
with each exception in some well-defined order of priorities. Needless to
say, the ARM CPU cores deal with these issues in an efficient way.

Flexible management of exceptions is provided in ARM processors
through the use of 'exception vectors' located at the start of the memory
address space (that is at address OxOOOOOOOO). The first eight words of the
address space are reserved for the vectors of each of the eight possible
types of exception.

Table 5.1 summarizes the exception vectors at the start of the ARM
address space.

Table 5.1 Exception vectors summary

Address Exception Mode on entry

&00000000 Reset Supervisor

&00000004 Undefined instruction Undefined

&00000008 Software interrupt Supervisor

&OOOOOOOC Abort (prefetch) Abort

&00000010 Abort (data) Abort

&00000014 (Reserved)

&00000018 IRQ IRQ

&OOOOOOlC FIQ FIQ

Each exception vector is a single 32-bit word and is placed without any
further addresses between it and its neighbour. Because only a single
word is allowed per exception vector it is normal practice to place an
unconditional branch instruction (B) at each address with its branch offset
field pointing to the relevant exception service routine.

5.2.1

ARM processor exceptions 109

In the special case of FIQ, which uses the last vector, the exception
handler can run on sequentially from its vector address, removing the
need for a branch and its associated delays.

Servicing an exception

Most exceptions are usually accompanied by a change of processor mode.
The CPU automatically selects a mode according to the nature of the
exception, so, for example, a FIQ interrupt causes the CPU to change to
FIQ_32 mode.

All variants of the ARM processors contain 'banked' registers to
allow the CPU state to be efficiently preserved when an exception arises;
banked registers ensure that little or no state information will need to be
written to memory, providing working register space to the exception
handler without the need to save User Mode state. Figure 5.1 summarizes
the register set available and is repeated from Chapter 2.

Whenever an exception occurs the following things happen within
the CPU, in this order:

• The PC (rlS) is saved in the banked r14 of the new mode
• The CPSR is saved in the banked SPSR of the new mode
• The PC (rlS) is loaded with the relevant vector for the exception (see

below)
• The CPSR mode flags are forced to the relevant value for the new

mode (see below)
• The CPSR interrupt mask bits may also be set to prevent nesting of

interrupts

Notice that the general effect is rather as if a 'branch-with-link'
instruction (BL) had been executed; the combination of saving the CPU
state (PC and CPSR) followed by a branch (caused by loading a new
value into the PC) is certainly similar. The significant difference between
an exception and a BL instruction is that a change of processor mode also
occurs, so the software executed as a result of branching through the vec­
tor can deal with the exception free of the normal constraints of User
mode (for example memory management or instruction restrictions).

All non-user modes have at least rl3, r14 and the CPSR bank
switched when the mode change occurs. r14 contains the previous PC
(rlS) address while r13 is traditionally used as a stack pointer. FIQ mode
has a further five registers available, r8-r12, to allow more room for the
FIQ handler to work in.

Special treatment of the FIQ exception vector

The FIQ vector is the last in the exception vector table so that the instruc-

110 Aborts, exceptions and interrupts

General registers and program counter
User32
mode

FIQ32
mode

Supervisor32
mode

Abort32
mode

IRQ32
mode

Undefined32
mode

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

RS RS RS RS RS RS

RS RS RS RS RS RS

R7 R7 R7 R7 R7 R7

RS RS_fiq RS RS RS RS

R9 R9_flq R9 R9 R9 R9

R10 R10_flq R10 R10 R10 R10

R11 R11_fiq R11 R11 R11 R11

R12 R12_fiq R12 R12 R12 R12

R13 R13_fiq R13_svc R13_abt R13_irq R13_undef

R14 R14_flq R14_svc R14_abt R14_irq R14_undef

R1S (PC) R1S (PC) R1S (PC) R15 (PC) R15 (PC) R15(PC)

CPSR

Program status registers

CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq PSR_unde

Figure 5.1 Register organization

tions for its service routine can follow it directly if desired, thereby
removing the overhead of several cycles which results from branching.

Exception priorities

When several exceptions occur simultaneously they are resolved in order
of priority and then each serviced in turn before execution of the inter­
rupted r ogram resumes. ARM6 se>Vices exceptions in the following

5.3

5.3.1

Types of ARM exception 111

order:

• Reset (highest priority)
• Data abort
• FIQ
• IRQ
• Instruction prefetch abort
• Undefined instruction, SWI instruction (lowest priority)

Note that not all exceptions can occur at once: 'undefined instruc­
tion' and 'SWI instruction' are mutually exclusive since they each corre­
spond to particular decodings of the current instruction.

Types of ARM exception

Each of the different types of exception supported by the ARM6 core are
outlined in the next few sections. Interrupts and memory aborts are
examined in more detail in later sections.

Reset

The Reset input is expected to be used only for signalling 'power-up'
when a system is first switched on, or for re-starting a system as if it had
just been powered-up, perhaps as a result of user intervention such as
pressing a Reset button. The fact that a program interrupted by a Reset
cannot be restarted limits the usefulness of the Reset exception for other
purposes.

When the processor's external 'nReset' input is asserted, ARM6
abandons the current instruction and continuously executes no-opera­
tions (NOPs) whilst presenting incrementing addresses on the address
bus.

Once 'nReset' is de-asserted again ARM6 then:

• Overwrites r14_svc and SPSR_svc with the (undefined) contents of
PC andCPSR

• Forces CPSR mode bits M[4:0] to %10011, switching the CPU to
Supervisor mode, then sets the I and F flags to disable both kinds of
interrupt

• Forces the PC to address OxOOOOOOOO to fetch the next instruction

Since undefined (meaningless) values for PC and CPSR are saved in

112 Aborts, exceptions and interrupts

5.3.2

5.3.3

the banked registers it is not possible to resume execution of the previous
program after a Reset.

Undefined instruction exception

Whenever the ARM6 core executes any coprocessor instruction or certain
undefined instructions then the instruction is broadcast to all coproces­
sors attached to the CPU. If there are no coprocessors attached or none of
them responds to the instruction in question then an 'Undefined instruc­
tion' exception occurs and the ARM6 then:

• Saves the address of the aborting instruction plus 4 in r14_und and
saves CPSR in SPSR_und

• Forces CPSR mode bits M[4:0] to %11011, switching the CPU to
Undefined mode, then sets the I flag in the CPSR

• Forces the PC to address Ox00000004 to fetch the next instruction

This mechanism allows the ARM instruction set to be expanded
either through the addition of coprocessor devices and/ or by providing
software which intercepts the address vector for this exception and inter­
prets the 'new' instruction in question. Refer to Chapters 2 and 9 for more
information on coprocessor instructions.

Software Interrupt (SWI)

The software interrupt instruction SWI causes the CPU to switch to
Supervisor mode and contains within the instruction word a 24-bit
parameter field which can be retrieved later. The purpose of this instruc­
tion is to allow User mode programs to request privileged services from
the operating system, for example input/ output operations, which many
operating systems will only allow in Supervisor mode. When a SWI
instruction is executed ARM6:

• Saves the address of the SWI instruction plus 4 in r14_svc and saves
CPSR in SPSR_svc

• Forces CPSR mode bits M[4:0] to %10011, switching the CPU to
Supervisor mode, then sets the I flag to disable IRQs

• Forces the PC to address Ox00000008 to fetch the next instruction

The value of the 24-bit parameter can be readily accessed using
r14_svc and it is typically interpreted as an index to a list of possible serv­
ices provided by the operating system.

In some of the examples in this book we have followed the de facto
standard in the ARM world that SWI OxOOOOOOOO will cause the ASCII

5.3.4

5.3.5

Types of ARM exception 113

character in bits [7 .. 0] of rO to be printed to the standard output stream by
the operating system. The ARM SOT environment discussed in Chapter 3
supports this standard.

Data and Prefetch abort exceptions

The ARM processors distinguish between two different kinds of abort
exception:

• Prefetch aborts occur when the CPU attempts to execute an instruc­
tion which has been prefetched from an 'illegal' address.

• Data aborts occur when a data transfer instruction attempts to load
or store data at an 'illegal' address.

In each case 'illegal' addresses are those which have been deter­
mined by the memory management subsystem as not being accessible to
the processor in its current mode. Both data and prefetch aborts may be
caused either by an on-chip MMU (where present, for example in
ARM600/610) or by assertion of the processor's 'Abort' input. If the
external 'Abort' input is asserted during an external memory access that
memory access is flagged as illegal. The memory management subsys­
tem, which is totally separate from the CPU core, is solely responsible for
deciding whether a memory access is allowable and causing the abort if
necessary.

When an abort of either kind occurs, the ARM6:

• Saves the address of the aborted instruction plus 4 (for prefetch
aborts) of plus 8 (for data aborts) in r14_abt and saves the CPSR in
SPSR_abt

• Forces CPSR mode bits M[4:0] to %10111, switching the CPU to
Abort mode, then sets the I flag in the CPSR

• Forces the PC to address OxOOOOOOOC (prefetch aborts) or
OxOOOOOOlO (data aborts) to fetch the next instruction

Refer to the section on memory management in Chapter 6 for more
information about possible sources of data and prefetch aborts.

External IRQ interrupt

When the CPU's external Interrupt Request IRQ input is asserted (low)
and the I bit in the CPSR is clear the current instruction is completed and
the ARM6 then:

• Saves the address of the next instruction plus 4 in r14_irq and saves
CPSR in SPSR_irq

114 Aborts, exceptions and interrupts

5.3.6

5.4

• Forces CPSR mode bits M[4:0] to %10010, switching the CPU to IRQ
mode, then sets the I flag to disable further IRQ interrupts

• Forces the PC to address Ox00000018 to fetch the next instruction

Interrupts are discussed in more detail in the next few sections of
this chapter.

External FIQ interrupt

When the CPU's external Fast Interrupt Request 'FIQ' input is asserted
(low) and the F bit in the CPSR is clear the current instruction is com­
pleted and the ARM6 then:

• Saves the address of the next instruction plus 4 in r14_fiq and saves
CPSR in SPSR_fiq

• Forces CPSR modes bits M[4:0] to %10001, switching the CPU to
FIQ mode, then sets both the I and F flags to disable both kinds of
interrupt

• Forces the PC to address OxOOOOOOlC to fetch the next instruction

FIQs have a higher priority than IRQs in two respects: firstly they
are serviced first when multiple exceptions arise, and secondly servicing
them in turn disables IRQs (as noted above), thus preventing any IRQs
from being serviced until after the FIQ handler has re-enabled them.

An example interrupt handler

In order to illustrate the process of despatching interrupts the following
extract from the IRQ handler for the DEMON debugger is included. This
routine demonstrates good practice in several ways, notably its versatile
26-bit or 32-bit address space option and its model register context sav­
ing.

Since this routine is only an extract from a much larger source file its
header, where all the definitions appear, is not included - good choices
for label and constant names ensure that its legibility is not diminished.

(C) Advanced RISC Machines Ltd . 1993

Author : Dave Jaggar

This routine is the Serial chip interrupt handler . When an

An example interrupt handler 115

interrupt occurs , one of three things has happened

1) the timer has started another period

2) an error happened (character or break)

3) a character has been received

SerialintSTR rl4 , [rl4 , -rl4] store lr at zero

LDR

STMIA

LDR

SUB

IF {CONFIG} = 26

STMIA

ELSE

MRS

STMIA

END IF

LDR

LDR

STR

MOV

LDR

TST

BEQ

LDR

LDR

ADD

rl4, =SavedRegs

r14 ! , {r0-r13}

rO , [rO,-rO]

rO , rO , #4

rl4! , {rO}

rl, SPSR

r14 ! , {rO , rl}

re - base r14

save them

get old r14 into

adjust ready for

the return

store them too

get the old CPSR

store them too

rO

rO , =ResetVectorCopy ; restore location

; zero

rO, [rOJ

rO, [rO , -rO] store it

r3, #SerialChipBase

rO , [r3 , #ISR] get the interrupt

status register

rO , #ISRTimerTicked ; Timer Interrupt ?

IntNoTick

r2, =TimerVal

rl , [r2]

rl , rl , #1

load the current value

increment it

116 Aborts, exceptions and interrupts

STR

MOV

STR

IntNoTickLDR

TST

BLNE

MOV

LDR

TST

BLNE

LDR

IF (CONFIG}

LDR

MSR

END IF

LDR

LDR

CMP

32

rl, [r2]

rl, #ResetTimer

rl , [r3 , #CR]

rO , [r3 , #SR]

store it back

clear the interrupt

get the status

register

rO , #SRNastyError ; any errors ?

ROMReset Hard Reset

r3, #SerialChipBase

rO , [r3 , #SR]

rO, #SRRxReady

NewMessage

rl4, =SavedRegs

rO , [rl4 , #60]

SPSR, rO

get the status

register

character arrived

pick up the CPSR

ready to restore

rO, =NextintHandler ; pass the interrupt

rO , [rO]

rO , #0

on?

pass the interrupt

on?

STRNE rO, [rl4 , #60]

LDMNEIA rl4 , (rO-lr , pc}

fake the PC

restore registers

LDMEQIA r14' (rO - lr}

MOVEQS pc , lr

restore registers

and resume

5.5

5.6

Interrupt latency 117

Interrupt latency

Although interrupts are in principle capable of very rapidly bringing asyn­
chronous events to the attention of the application or operating system,
their usefulness can be tempered by the time taken to get around to actu­
ally servicing the interrupts, a period known as the 'interrupt latency'.

The ARM's two interrupt inputs differ in the hardware support
present to help minimize interrupt latency. As well as having a higher pri­
ority than IRQ the FIQ interrupt service handler has a private register
bank which is much larger than that for IRQ mode and also has its excep­
tion vector strategically placed last in the vector table, in the expectation
that these concessions will minimize the FIQ latency.

Clearly, FIQ interrupts stand a considerably better chance of being
serviced quickly than IRQs, which must wait until any pending FIQs
have been serviced before they stand any chance of being serviced them­
selves. Nevertheless, some other issues can contribute to degrading the
latency of FIQs, in particular long instructions and the presence of the
cache.

Interrupts are only considered by the processor at the end of execu­
tion of each instruction. Some instructions can take many cycles to exe­
cute in their most complicated cases: MUL and MLA can both potentially
take up to 1 S + 16 I cycles, and the multiple register transfer instructions
LDM and STM can take up to 17 S + 2 N + 1 I cycles when all 16 registers
are being transferred. Any interrupt which is unfortunate enough to come
along at the start of execution of either of these instructions is doomed to
have a long wait before any consideration is given to it.

Because the current ARM cache design randomly replaces lines of
four words when a new cache slot is required it is quite possible that the
service routine for an interrupt will be thrown out of the cache at around
the time it is just about to be required. But since the cache line replace­
ment process is random, it is not possible to predict very accurately how
this will impinge on the interrupt latency.

Exceptions from the application's perspective

Excluding the SWI instruction and the FIQ and IRQ interrupts, each of
the exceptions that may occur during the execution of an ARM program
is an indication of a potentially serious problem. Some operating systems
will use exceptions to implement various types of inter-process protection

118 · Aborts, exceptions and interrupts

5.6.1

or virtual memory: data and prefetch aborts, memory management faults
and address exceptions are all potentially recoverable if they arise within
a well-defined environment.

Undefined instructions and floating-point arithmetic faults are typi­
cally handled by floating-point support software, which may or may not
be able to take any action to recover: an instruction which is not imple­
mented in hardware may quite correctly be faulted and dealt with by
software emulation, but a 'division by zero' exception is hard to do any­
thing about except bring the program in question to a grinding halt.

The precise way in which each kind of exception is dealt with is
completely operating system-specific. Operating systems which do not
provide process protection or virtual memory are likely to treat all kinds
of memory aborts as serious errors, since they will usually reflect an
attempt to access memory which simply doesn't exist. In those operating
system which do provide such features a considerable amount of software
is required to unravel the cause of an exception and attempt to deal with
it. Operating systems such as Unix and its derivatives such as Mach are
notable examples of the latter group: both provide sophisticated multi­
tasking mechanisms as well as inter-process protection and demand­
paged virtual memory.

Programs written in Assembler will usually have to follow the spe­
cific guidelines laid down by the operating system in question.

Programs written in high-level languages, notably C, have the bene­
fit of some standardization to define more clearly how exceptions are
handled.

Exceptions and C signals

The ANSI C standard defines a class of library function in the header file
signal . h to support a standardized way of dealing with run-time
exceptions. The armcc compiler presents exceptions to the application
program through the use of signals and allows all types of ARM excep­
tion to be propagated to the operating system or application program in a
manner which complies with the ANSI standard. So, for example, a signal
known as 'SIG_FPE' is raised whenever a floating-point exception occurs,
and so forth.

Refer to the ARM Cross Development Toolkit documentation for
more information about signals.

5.7

Summary 119

Summary

In this chapter we have seen how unusual events, both synchronous and
asynchronous to the CPU, can cause exceptions which require special
processing. In most ARM applications the SWI instruction and IRQ and
FIQ interrupts will be sources of 'intentional' exceptions, while other
kinds of exception, such as memory aborts, may indicate problems.

It is usually the role of the operating system to provide general-pur­
pose exception handlers, but it is in the nature of exceptions that special
treatment may be required in some environments.

The FIQ interrupt in particular is capable of supporting very high
bandwidth data transfers, sometimes known as 'software DMA', without
the need for external support circuitry. This reduces the cost overheads of
data transfers between peripherals and system memory, at the expense of
worsened latency for other kinds of exception.

6.1

6
ARM architecture extensions

Introduction

This chapter examines the architectural extensions which enable modular
ARM processor variants to be constructed using the ARM QuickDesign
service.

Modem computer systems increasingly demand performance and
functionality which is not available from a such a simple device as the
original ARM processor core, so various commonly required extensions
to the ARM architecture have been pre-designed to allow a wide variety
of different ARM variants to be constructed. In the past, these architecture
extensions have typically been packaged in separate ICs because of the
cost penalties of building larger and more complex devices. As the tech­
nology of chip fabrication has steadily improved it has become possible
to migrate what were previously separate ICs onto the same silicon die,
allowing a modular 'building block' approach to be used to assemble
highly integrated devices.

The most recent ARM processors, the ARM600 and ARM610, are the
result of this kind of evolution. In creating the ARM610 for Apple, ARM
Ltd was able to offer 'shrink-wrapped' building blocks including a
proven 32-bit RISC processor design, an efficient mixed instruction and
data cache and a write buffer custom-made for ARM processor cores; the
final component was the design expertise to implement Apple's own pat­
ented memory management technology.

The ARM600 includes a coprocessor interface, cache, and memory
management unit as well as the ARM processor core (see Figure 8.4).

121

122 ARM architecture extensions

6.2 ARM600 system control coprocessor

Those ARM processors that include one or more of the architecture exten­
sions need to have a mechanism for initializing and enabling such things
as the cache and the memory management system. Since the introduction
of the ARM3 this has been achieved through the use of an on-chip 'system
control coprocessor' which exists simply to make the relevant registers
easily accessible by means of coprocessor instructions.

The system control coprocessor is always coprocessor number 15
and it has a number of registers which vary according to the type of ARM
processor in question. The ARM600/610's system control coprocessor has
eight valid registers (0 .. 7), with all the others (8 .. 15) being reserved. A
coprocessor register transfer instruction (MCR/MRC) is used to move
data between the integer CPU registers and the coprocessor registers,
allowing both reading and writing of system control data. Operations on
the system control coprocessor's registers may only be performed in a
privileged (that is non-User) mode, so they can normally only be
exploited by the operating system itself.

MRC
31 28 27 24 23 21 20 19 16 15 12 11 8 7

Rd

MGR
31 28 27 24 23 21 20 19 16 15 12 11 8 7

lol CRn I
Cond = ARM condition codes
CRn = ARM600 internal coprocessor register
Rd = ARM register

Figure 6.1 Internal coprocessor instructions

5 4 3 0

5 4 3 0

Table 6.1 summarizes the purpose of each of the ARM600/610 sys­
tem control coprocessor registers.

6.2.1

ARM600 system control coprocessor 123

Table 6.1 ARM600 system control coprocessor registers

Register# Read Write Comment

0 CPU ID register Invalid Revision number

1 Invalid Control register Control flags

2 Invalid Translation table base MMUpointer

3 Invalid Domain access control Domain status

4 Invalid Invalid Reserved

5 Fault status reg- TLB flush control See text
ister (FSR)

6 Fault address TLB purge address See text
register (FAR)

7 Invalid IDC flush control Flush cache

System control coprocessor registers

This section considers each of the system control coprocessors in turn;
this information is primarily of interest to operating system writers, since
these registers may only be accessed in non-User modes. Nevertheless, it
is important to understand how overall control of the processor is
achieved through these registers in order to understand the sections
which follow about the cache, write buffer and memory management
unit.

CPU ID register (Register 0)

This read-only register (shown in Figure 6.2) is present in all ARM vari­
ants which include a system control coprocessor, including ARM3 and
ARM6. It consists of four fields, which are interpreted as follows:

31 24 23 16 15 4 3 0

41 I ASCII code Part Rev

Figure 6.2 Coprocessor ID register

• Bits [31..24] contain the ASCII code for a capital A
• Bits [23 .. 16] contain the ASCII code for the name of the ARM foun-

124 ARM architecture extensions

dry partner which produced that chip, usually the first initial of the
company's name, for example V for VLSI Technology.

• Bits [15 .. 4] contain a 12-bit number representing the processor type,
Ox060 for ARM600/10

• Bits [3 .. 0] contain a 4-bit number indicating the processor revision

The revision field, in bits [3 .. 0], is particularly of interest since it
reveals which version of the processor is in use; refer to the ARM Data
Sheet for the processor in use to determine which revisions are current.

Non-cached 26-bit address bus ARM processors (that is ARM2/250)
do not include system control coprocessors and will take the 'Undefined
instruction' exception if coprocessor instructions are issued to coproces­
sor number 15.

Control register (Register 1)

This write-only register contains a number of control bits which deter­
mine the precise mode of operation of the processor. Its precise form is
shown in Figure 6.3. The interpretation of the valid bits [8 .. 0] is shown in
Table 6.2; all other bits are reserved and must be written as zeros.

Table 6.2 Control register bits

Bit Name Purpose

s System Controls the permission system

B Big/little endian B=l selects big-endian operation, B=O little-endian

L Late abort timing L=l selects Late abort mode, L=O selects Early abort
mode

D Data space size D=l selects 32-bit data space, D=O selects 26-bit space

p Program space size P=l selects 32-bit program space, P=O select 26-bit
space

w Write buffer enable W=l enables the write buffer, W=O disables it, but see
text

c Cache enable C=l enables the instruction and data cache, C=O disa-
bles it, but see text

A Alignment fault A=l enables alignment faults, A=O disables them
enable

M MMUenable M=l enables the MMU, M=O disables it, but see text

The M, C and W bits allow the memory management unit (MMU),

ARM600 system control coprocessor 125

31 30 9 8 7 6 5 4 3 2 1 0

I 0 Is Is IL lo IP He IA IM I

Figure 6.3 Coprocessor control register

instruction and data cache (IDC) and write buffer (WB) to be enabled and
disabled independently. However, the internal data cache and the write
buffer require the memory management unit to be enabled to operate, so
the valid combinations of these control bits are restricted to the subset
shown in Table 6.3.

Table 6.3 Valid combinations of M,C and W control bits

MMU IDC WB

off off off

ON off off

ON ON off

ON off ON

ON ON ON

All other combinations are reserved and must not be used since they will
give undefined results.

Translation table base (Register 2)

This write-only register, shown in Figure 6.4, stores the starting address of
the so-called 'Level One translation table', which is initialized in memory
by the operating system for use by the memory management unit. The
Level One translation table may only begin on a 16 kbyte boundary, so
only bits [31..14] are valid; the rest should be written as zeros.

31 14 13 0

Translation table base

Figure 6.4 Translation table base

126 ARM architecture extensions

Domain access control (Register 3)

This write-only register, shown in Figure 6.5, stores the current access
control settings for each of the 16 possible protection domains 0 .. 15. Two
bits are used per domain.

31 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

I 1s I 14 I 13 ! 12 ! 11 I 10 I 9 I 8 I 7 16 I s I 4 I 3 I 2 I 1 I 0 I
Domain

~ Fault ~ Client ~ ReseNed [i2J Manager

Figure 6.5 Domain access control

Reserved (Register 4)

This register is reserved and no attempt should be made to access it.

Fault Status Register (FSR)ffLB flush control (Register 5)

This register returns the previous data fault status when read and allows
the translation look-aside buffer (TLB) to be flushed when written.

Reading from this register, known as the 'Fault Status Register'
(FSR) and shown in Figure 6.6, returns the status of the last data fault to
occur in the format shown below. Prefetch faults do not update this regis­
ter. Note that only the bottom 12 bits are valid and that the top 20 bits will
contain random data which should be masked out and ignored.

Within the 12 least significant bits the information shown in Table
6.4 is returned.

31 12 11 8 7 4 3 0

I ol ol ol ol Domain I Status

Figure 6.6 Fault status register

ARM600 system control coprocessor 127

Table 6.4 Fault status register bits

Bits Meaning

11..8 Always zero

7 .. 4 Domain number being accessed when the data fault occurred
(one of 15 .. 0)

3 .. 0 Type of access being attempted when the fault occurred

Writing to this register causes all 32 entries of the TLB (see The Transla­
tion Look-aside Buffer (TLB) on page 136) to be 'flushed', that is dis­
carded. The data written is ignored, as shown in Figure 6.7; it is the write
operation itself which has the effect.

31 0

Data ignored

Figure 6.7 Flushing the TLB

Fault Address Register!TLB purge address (Register 6)

This register returns the previous data fault address when read and
allows an address to be purged from the translation look-aside buffer
when written. Its layout is shown in Figure 6.8.

Reading this register, known as the 'Fault Address Register' (FAR),
returns the virtual address of the last data fault in all 32 bits of the word.
When used in conjunction with the fault status returned by the previous
register (FSR) it may be possible for the operating system to accurately
locate and re-try faulted data accesses.

31 0

Fault address

Figure 6.8 Fault address register

Writing to this register causes the memory page whose top 20 bits are
those written in bits 31..12 of the data to be searched for in the translation
look-aside buffer, as shown in Figure 6.9. If a match is found the corre­
sponding TLB entry is marked invalid and subsequent accesses to that
memory region will cause the TLB to be re-loaded.

128 ARM architecture extensions

6.3

31 12 11 0

Purge address

Figure 6.9 TLB purge

IDC flush control (Register 7)

This write-only register allows the instruction and data cache to be com­
pletely invalidated ('flushed') .

Writing to this register causes the entire IDC to be flushed; the data
written is ignored.

System control coprocessor registers 8-15

These registers are not present and any attempt to access them causes the
undefined instruction exception to occur.

Instruction and Data Cache (IDC)

Improvements in CPU performance are usually due to increases in the
CPU clock frequency; a higher frequency clock leads to a shorter cycle
time and consequent reductions in program execution time. Unfortu­
nately, it is not straightforward simply to increase the clock frequency.

Firstly, the process used to fabricate the CPU may not yield reliable
operation at higher frequencies without design changes to the CPU; sec­
ondly, the memory to which the CPU is interfaced can itself only operate
at a certain frequency and new, faster, RAM chips will undoubtedly be
required. It is not uncommon for RAM of the required speed to be prohib­
itively expensive or to need to be impossibly fast to work correctly.

The contemporary solution to this problem used in many micro­
processors, including the ARM family, is to employ a small 'cache' mem­
ory on or near the CPU. A small amount of very fast RAM known as the
cache maintains a copy of the contents of the most recently accessed
memory locations and is able to provide data to the processor very
quickly should any address in the cache be accessed again.

Since most programs contain loops, subroutines and references to
global variables it is likely that the cache will frequently contain the
desired data. Good cache design allows very frequent references to the
cache in favour of main memory (known as the cache 'hit rate'), with dra­
matic peformance improvements as a result. Caches vary widely in size

6.3.1

Instruction and Data Cache (IDC) 129

from a few tens of bytes up to several megabytes.
Of course, when a memory access to a location which is not present

in the cache occurs the CPU must perform an access to main memory,
slowing the CPU down, and copy the data returned into the cache before
proceeding. Two CPU clock signals are usually employed: a 'core' clock
which determines the operating frequency of the cache and the CPU
when a cache hit occurs, and a 'memory' clock which determines the
speed of main memory accesses when a cache miss occurs. Switching
between these signals requires some synchronization circuitry and usu­
ally incurs a performance penalty.

Some extra circuitry is required to control the cache and to ensure
that its contents remain consistent with the main system memory: each
time a write occurs to main memory the contents of the relevant address
must be updated if it occurs in the cache. Some areas of memory may not
be suitable for caching (for example memory-mapped peripherals whose
register contents may change) and indeed some memory accesses may
require the entire cache to be flushed of data and allowed to refill.

Many contemporary CPUs employ caches, either on-chip or off-chip
or both. Both the Intel 80486 and the Motorola 68040 have on-chip caches
which allow them to operate at significantly higher frequencies than their
predecessors. Increasingly common is the use of a 'secondary' off-chip
cache to increase the cache hit rate still further. Of course, this also
increases the cost of the system by increasing its complexity and the
number and size of the components involved.

The first ARM processor to employ a cache was the ARM3; it added
a 4 kbyte mixed instruction and data cache to the ARM2 CPU core, while
at the same time the entire chip was shrunk to increase its maximum
clock frequency. The result was a CPU with an identical instruction set
and full backwards code-compatibility which was able to operate some
three to four times faster than the ARM2. In fact, the ARM3 was such a
good replacement for ARM2 that a number of companies set about pro­
ducing upgrade products which allowed users of ARM2-based systems
to swap processors to take advantage of the new device.

The ARM600 CPU cache

The ARM600 employs the same style of cache as did the earlier ARM3.
The cache contains 4 kbytes of storage and is arranged as 256 'lines' of 16
bytes (four words) organized as four blocks of 64 lines. The cache oper­
ates on the 'virtual' addresses output by the CPU before the memory
management unit has translated them to real 'physical' addresses. When­
ever a cache 'miss' occurs a whole cache line (four words) is re-loaded
from main memory, improving the chance that the next address will

130 ARM architecture extensions

6.3.2

already be cached when it comes to be executed.
Whenever a new line is to be cached it is necessary to ensure that the

line it replaces is chosen efficiently. Many studies of cache replacement
algorithms have been performed and the designers of the ARM cache
conducted extensive simulations before choosing their strategy. The ARM
caches chooses lines for replacement using a pseudo-random algorithm;
this turns out to give results which are nearly as good as the 'perfect'
algorithm of replacing the line which has been least recently accessed, but
is considerably simpler to implement.

At 4 kbytes the ARM600 cache is significantly smaller than those of
many other contemporary processors. This is an intentional side-effect of
the desire for a low-cost device; the use of a six transistor-per-bit RAM
cell consumes a significant number of transistors and so the overall size of
the device is strongly related to the cache size. Future ARM devices will
almost certainly use fewer transistors-per-bit (four is now common) and
thus allow larger caches as the fabrication processes become available to
support them, with consequent increases in performance.

Despite the small cache size, the ARM600 achieves a higher hit rate
than some larger caches because of its relatively high degree of associativ­
ity (the number of possible targets for new cache lines). Full associativity
(256 ways) was found in simulation not to give significantly better per­
formance than 64-way associativity, but the latter has the greater virtue
that only one of the four cache blocks needs to be powered during cache
searches, significantly reducing the cache's power consumption.

How the ARM600 I DC works

When the CPU reads data from memory the cache is searched for the rele­
vant address. If the address occurs in the cache its data is fed to the CPU
in a single cycle of the core clock, known in ARMs as the fast clock
'FCLK'. If the address doesn't occur in the cache the CPU re-synchronizes
to the memory clock 'MCLK' and reads the line of data (four 32-bit
words) which includes the address being sought and stores it in a ran­
domly chosen line of the cache.

Write-through strategy

When a write occurs the ARM immediately re-synchronizes to the MCLK
and performs a write operation to main memory; this strategy is known
as a 'write-through' implementation. If the cache holds a copy of the data
at the same address then it is normally updated automatically. However,
in some cases it may be desirable to prevent this updating and the ARM
cache allows regions of the memory map to be marked 'updateable' or
not accordingly.

6.3.3

Instruction and Data Cache (IDC) 131

Virtual addresses and cache flushing

Since the cache works on virtual addresses it is unaware of any remap­
ping of virtual memory addresses to physical addresses that may be per­
formed downstream by the memory management unit. If the virtual to
physical mapping of memory is altered then the data in the cache will
become invalid and must be flushed out of the cache. The cache may be
flushed under software control by performing a write to the cache control
coprocessor.

Un-cacheable regions

Certain ranges of addresses may need to be marked as un-cacheable to
prevent erroneous data from being used by the CPU. In the case of mem­
ory-mapped peripherals, the peripheral device may contain registers
whose contents can change between reads by the CPU; in this instance
the relevant region must not be cached since the cache contents will be
invalid if the peripheral registers change state.

Multi-mapped regions

Because the ARM IDC works on virtual addresses it assumes that every
virtual address is mapped by the memory management unit to a different
physical address. If the same physical address is mapped to more than
one virtual address then the cache will attempt to maintain an entry for
both (or as many as there are) mappings. When a CPU write occurs only
one of the cache entries will be updated, leaving the other invalid. To
avoid such conflicts all multi-mapped virtual addresses must be marked
as un-cacheable.

Semaphore SWP instruction (read-lock-write)

The ARM IDC treats the data swap instruction SWP as a special case and
never accesses the cache during the read phase of the instruction. The
instruction performs a read from external memory, regardless of the cache
contents, then writes the new data back to external memory, updating the
cache if the region containing the address is marked as cacheable.

Programming the ARM IDC

The ARM IDC uses a pair of control bits to determine its behaviour for
each region of memory in the system. In the earlier ARM3 CPU (which
has no memory management unit on-chip) a dedicated cache control
coprocessor was implemented to allow the system programmer to set up
the cache behaviour. In the ARM600 the cache control bits are located
within the MMU control tables (for this reason the MMU must be enabled

132 ARM architecture extensions

6.4

before the instruction and data cache can be used); consult Memory Man­
agement Unit (MMU) on page 134 for more information. The IDC is disa­
bled on Reset.

For each memory region supported by the MMU there are two IDC
control bits. The 'cacheable' bit (C) determines whether reads from that
region are cached, as follows:

• Cacheable (C=l)
The cache is searched for the relevant address; if it is found in the
cache then the cached data at that address is supplied to the CPU in
a single FLCK cycle. If the address is not in the cache an external
memory access to fetch a cache line (four 32-bit words) is performed
and stored in a pseudo-randomly chosen cache line. The data is then
passed to the CPU.

• Un-cacheable (C=O)
The cache is not searched for the address; instead an external
memory access to that address alone is performed (not a line fetch)
and the cache contents are not updated.

The second IDC control bit for each region, the 'updateable' bit (U), deter­
mines the IDC behaviour when writes to that region occur, as follows:

• Updateable (U=l)
An external memory access is performed and the cache is searched.
If the cache holds a copy of the data at that address it is
simultaneously updated.

• Non-updateable (U=O)
An external memory access is performed but the cache is not
searched and the contents of the cache are not affected.

Data Write Buffer (WB)

Where the instruction and data cache improves the performance of
ARM600 by increasing the speed with which memory reads take place,
the Write Buffer (WB) does the same thing for memory writes. The earlier
ARM3 CPU has only the IDC, and although it achieves significant per­
formance improvements as a result, this is offset by the need to slow the
CPU down during writes. The data write buffer was introduced in the
ARM600 to reduce this effect.

6.4.1

6.4.2

Data Write Buffer (WB) 133

How the ARM write buffer works

The write buffer provides a queue of address/ data slot pairs which may
be written in a single cycle of the CPU core clock FCLK. As CPU writes
occur they fill up slots at the rear of the queue, while the memory inter­
face simultaneously unloads the slots from the front of the queue and per­
forms the 'real' write to memory. Where memory writes are sparsely
distributed through a program (frequently the case) the real memory
writes will be interleaved with data reads from the IDC and the effective
memory bandwidth is increased.

In the ARM600 the write buffer can queue up to eight data words at
up to two different initial addresses. A single write requires one data slot
and one address slot; a sequential write of n words requires n data slots
and one address slot (the address of the first write). So two quad-word
writes can be queued, or a single write to one address followed by
another write of up to seven words starting at a different address, and so
forth.

Programming the write buffer

In the ARM600 the write buffer control bits are located within the mem­
ory management unit (MMU) control tables (for this reason the memory
management unit must be enabled before the write buffer can be used);
consult the section below on the MMU for more information. The write
buffer is disabled on Reset.

For each memory region supported by the MMU there is a single
WB control bit. The 'bufferable' bit (B) determines whether writes to that
region may be buffered in the write buffer or must be written out imme­
diately. When a CPU write occurs the MMU translation tables for the rele­
vant address are consulted and the appropriate action taken according to
the state of the B control bit, as follows:

• Bufferable (B=l)
The data is placed into the write buffer queue in a single FCLK cycle
per write and the CPU is allowed to continue. The write buffer
performs the external memory write in parallel with subsequent
CPU operations. If the write buffer queue is full then the CPU is
stalled until there is a free slot in the queue again.

• Unbufferable (B=O)
The CPU is stalled until the external write is completed; this will
require re-synchronization time and possibly several external
MCLK cycles.

134 ARM architecture extensions

6.5

6.5.1

6.5.2

• Semaphore (SWP) instruction (read-lock-write)
In the special case of the data swap instruction SWP all writes are
treated as unbufferable and cause an external memory write
regardless of the state of the B bit.

Memory Management Unit (MMU)

The ARM600 Memory Management Unit (MMU) is a sophisticated
address translation and memory access control device. All programs exe­
cuting on the CPU perceive the memory system as a contiguous 4 Gbyte
address space known as the 'virtual' address space. Whenever any access
to an address is attempted with the MMU enabled it intercepts the
address and consults its translation tables, either allowing the access or
'aborting' it and causing the relevant processor exception.

If the access is allowed the data is transferred and the cache option­
ally updated to improve retrieval time for subsequent accesses to the
same address. If the access is aborted the CPU branches to one of its abort
exception vectors allowing the operating system to deal with the abort as
appropriate.

Two separate mechanisms for controlling memory access are pro­
vided by the MMU: the first stage involves a view of memory populated
by 'domains' and the second stage involves checking access 'permis­
sions' .

Memory domains

Domains are areas of memory which may be defined to possess individ­
ual access rights: each domain has a 'status' associated with it which may
be either 'Manager', 'Client' or 'No Access'. A manager domain is able to
make memory accesses without its access permissions being checked (see
below); a client domain has its access permissions checked and enforced,
resulting in a 'permission fault' if any access violations are encountered.

Access permissions

Permissions determine what sort of memory access is allowed when a
particular domain has 'client' status (remember that manager domains
are unchecked). Permissions indicate which combinations of read and

Memory Management Unit (MMU) 135

write access are allowed in each of Supervisor and User modes, as sum­
marized in the Table 6.5.

Table 6.5 Access permissions

Code System flag
Supervisor

User mode Comment
mode

00 0 No access No access Fault all client accesses

00 1 Read only No access Read-only in Supervisor
mode

01 x Read/ Write No access R/ W only in Supervisor
mode

10 x Read / Write Read only Fault User mode writes

11 x Read/ Write Read / Write All types allowed in all
modes

The 'System flag' is a bit in the ARM600 control register (coproces­
sor #15, register 1, bit 8) which allows global control over access permis­
sions; this bit may only be altered in modes other than User mode and
will therefore typically be the sole concern of the operating system.

Use of the memory management unit

The combination of domains and permissions in the ARM600 MMU pro­
vides the hardware framework for supporting a number of modern oper­
ating system memory management strategies including:

• Multi-level memory protection, allowing the operating system to
have unrestricted access to the whole memory system while giving
user tasks their own protected memory regions

• Memory paging, allowing chunks of memory to be 'moved around'
in the virtual address space without any actual copying of the phys­
ical data

• Demand paged virtual memory, where fixed disks are used to simu­
late large amounts of memory when, in fact, only a small amount of
real physical memory exists

• 'Object-oriented' memory with support for background garbage
collection, through the use of domains.

136 ARM architecture extensions

6.5.3 The theory behind the memory management unit

In order to perform its task the MMU must consist of several logic blocks
within the processor and a number of 'translation tables' stored in mem­
ory and initialized by the operating system. The MMU control logic inter­
rogates these tables (a process colloquially known as 'table walking') to
determine the outcome of each memory access.

To enable the MMU to manage address translation it considers
memory to be divided into blocks of one of two types:

• 'Sections' are defined as 1 Mbyte regions of memory and are
therefore suitable for the allocation of large regions of the memory
map.

• 'Pages' are supported in one of two sizes: 'small' pages consist of
4 kbyte blocks of memory and 'large' pages of 64 kbyte blocks.
Pages are further subdivided into 'sub-pages' of a quarter the size,
that is 1 kbyte for small pages and 16 kbyte for large pages.

These multiple levels of memory management granularity allow the
translation tables to be kept reasonably small while still supporting a
good range of memory allocation sizes: 1 Mbyte, 64 kbyte, 16 kbyte,
4 kbyte, and 1 kbyte.

The process of consulting the MMU tables stored in memory is
potentially a slow one: in the worst case a memory reference may require
two separate memory accesses for table walking before the actual mem­
ory access which transfers the first word of data, each access taking lN
and 15 cycle (see Chapter 2) and therefore totalling 3N + 35 cycles. Fortu­
nately, the MMU will usually operate when the IDC is also enabled so
that some of the MMU table entries or the actual data required may
already be cached, but the small size of the cache limits this effect.

The Translation Look-aside Buffer (TLB)

A significant feature of the MMU which reduces the time penalty associ­
ated with performing address translation and checking is the Translation
Lookaside Buffer (TLB). This consists of a cache of the 32 most recently
used translation table entries.

Whenever a memory access is attempted the TLB is consulted to see
whether the appropriate table entry is already present; if so, the access
control logic determines whether the access is permitted; if not, the trans­
lation table walking logic retrieves the appropriate table entry from mem­
ory, stores it in the TLB (cyclically overwriting existing entries) and the
access control logic then determines whether the access is permitted.

6.5.4

Memory Management Unit (MMU) 137

The address translation process

Each virtual memory address generated by the CPU core is translated by
the MMU into a physical address and at the same time access permissions
are retrieved and checked. The translation and access permissions are
stored together in the 'translation table' located in system RAM. The
MMU contains the logic necessary to perform these translations and
checks without software intervention once the translation table has been
initialized by the operating system.

All memory accesses begin in the same way, with the first stage of
translation table checking, known as a 'Level One' fetch. According to the
contents of the table entry retrieved by the Level One fetch, known as the
'Level One Descriptor', a further Level Two fetch may occur (if the
address is mapped as a 'page') or the table lookup process may not com­
plete (if the address is mapped as a 'section').

It is the Level One Descriptors that are cached by the translation
look-aside buffer, so a TLB hit shortens the time needed to retrieve this
information and thus speeds all accesses to addresses within that page or
section.

Level One Descriptor Fetch

To determine where the Level One Descriptor is located the MMU must
perform a small amount of indexing arithmetic: the base address of the
translation table is stored in system control coprocessor register 2, of
which bits 31..14 (18 bits) are considered valid. An index into the transla­
tion table must then be added to the base address and this index is taken
from bits 31..20 (12 bits) of the virtual address in question, the two least
significant bits of the address being zero because this is a word-aligned
address (total 32 bits). The resulting physical address is read and the data
returned treated as a Level One Descriptor.

The Level One fetch arithmetic is summarised in Figure 6.10.

The Level One Descriptor

The 32-bit Level One Descriptor contains information about the descrip­
tor 'type' (page, section, invalid or reserved), IDC and WB control bits,
the domain number of this memory region (four bits) and second-level
page table address or section base address as appropriate according to the
type.

The format of the Level One Descriptor is shown in Figure 6.11.
The two least significant bits of the descriptor encode the descriptor

type as shown in Table 6.5.
The next three bits [4 .. 2] hold the IDC and write buffer control bits

U, C and B for sections, or just the U bit for pages. These bits indicate
whether the region is Updateable (that is whether the IDC is updated

(/)

c 0
"iii
c Q

)

x Q
)

~

::I

C3
2
:c ~

ro
:!:
a:
<

(

co
(
')

31
T

ranslation table base
14

T
ranslation base

31

T
ranslation base

31

T
able index 0

14 13

T
able index

F
irst level descriptor

31
-

-
-
-
-
-
-
-
-
-
-

V
irtual address

20 19

2
1

0

00 0

R
ead from

 m
em

ory

ClJ
:0
fl
c 0

~

U
i

c
jg ClJ
£ O

l
.!: (/)
(/)
~

(/)
0

ClJ li
o

._

o
~

<
(8

o..gi
-r: CD
C

D
>

~
~

:::1
_

O

)(/J

u:: .;:

0

31 20 19

Page table base address

Memory Management Unit (MMU) 139

12 11 10 9 8 5 4 3 2 1 0

00

Domain U 01

Translation
fault

Page

Section base add I I ap Domain UCB 10 Section

11 Reserved

Figure 6.11 Level One Descriptors

Table 6.6 Descriptor types

Bits [1..0] Type Comment

00 Invalid Section Translation Fault always generated

01 Page Indicates that this is a page descriptor: Level Two
lookup required

10 Section Indicates that this is a section descriptor: no further
lookup required

11 Reserve Reserved for future use. Currently behaves like
d 'Invalid'.

during writes), Cacheable (that is can be cached by the IDC during reads)
or Bufferable (that is can be written through the write buffer), respec­
tively. These bits were discussed earlier in the sections Programming the
ARM IDC on page 131 and Programming the write buffer on page 133,
above.

Bits [8 .. 5] hold the number of the domain associated with this mem­
ory region and whose access permissions are inherited from that domain
according to the state of bits in the Domain Access Control register. See
the section Memory domains on page 134, above, for more information
about domains.

The remaining valid bits of the descriptor [31..10] are treated differ­
ently according to whether the descriptor is for a page or a section.

• For a page descriptor a Level Two lookup will be required so bits
[31..10] contain the base address of the Level Two descriptor table. A
Level Two fetch is initiated automatically whenever a page
descriptor is returned by the Level One fetch. See below for more

140 ARM architecture extensions

information on Level Two lookup.
• For a section descriptor no further lookup is required: Bits [31..20)

contain the base address of the section (remember that a section is a
lMbyte region so the least significant 20 bits are not under consider­
ation) and bits [11 .. 10) contain a two-bit 'access permission' code
which is used when accesses are being performed in 'client mode'
for this domain. Table 6.7 summarizes the meaning of the access
permission bits for client mode access:

Table 6.7 Access permission bits for client mode accesses

Code
System flag Supervisor

User mode Comment (cp#l5, rl, bS) mode

00 0 No access No access Fault all client accesses

00 1 Read only No access Read-only in Supervisor
mode

01 x Read/ No access R/W only in Supervisor
Write mode

10 x Read/ Read only Fault User mode writes
Write

11 x Read/ Read/ All types allowed in all
Write Write modes

In the case of sections the MMU' s work is now almost completed.
The domain status register is checked for the specified domain and the
access permissions for that domain are then considered: either the access
is allowed, in which case the data is transferred as required by the
instruction or the access is denied, in which case an 'MMU fault' is raised.
Note that if the access is denied by the MMU then this occurs before any
external memory access to the data itself; the MMU stores information
about the faulting access in its Fault address and Fault Status registers, as
described in the section System control coprocessor registers on page 123.

Figure 6.12 summarizes the arithmetic and lookups performed for a
section reference.

Level Two fetch

When the Level One fetch from the translation tables returns a Page
Descriptor a further sequence of table-walking is needed to retrieve a
Level Two descriptor. The Page Descriptor contains the base address of
the Level Two descriptor table within which the descriptor for the
address in question may be found.

"T
l

ca·

c:
 Cil !'l

.....
.

I\
)

:::;-
1

Q
)

::::
J

(f
l ~

::::
J co

(f
l

CD

9.
 a·

::::
J CD
 co CD

::::
J

(
)

CD

(f
l

T
ra

ns
la

tio
n

ta
bl

e
ba

se

31

14

T
ra

ns
la

tio
n

ba
se

31

14
 1

3

Le
ve

l
1

T
ra

ns
la

tio
n

ba
se

T

ab
le

 i
nd

ex

en
tr

y

31

20

19

S
ec

tio
n

ba
se

 a
dd

!
I a

p

Le
ve

l
1

de
sc

ri
pt

or

L
0

V
irt

ua
l

ad
dr

es
s

31

2
0

1
9

T
ab

le
 in

de
x

I
S

ec
tio

n
in

de
x

31
 Le

ve
l O

ne

ta
bl

e
lo

ok
up

D
o

m
ai

n
 a

n
d

 a
cc

es
s

ro
~i

~~
i~

nB
 c~

~t
~~
lg
bi
ts

2
0

 1
9

S
ec

tio
n

ba
se

 a
dd

S

ec
tio

n
in

de
x

P
hy

si
ca

l
ad

dr
es

s

0 0

~

CD
 3 0 -< ~

!l
l

::
i

!l
l

cc

CD
 3 CD

::
i - c ::
i

;::
o:

 - ~ ~ c -
..
~

142 ARM architecture extensions

31

The descriptor indicates whether or not the relevant page is valid
and, if so, whether the sub-page it represents is a 'small page' (4 kbytes)
or a 'large page' (64 kbytes).

The format of the Level Two descriptor is shown in Figure 6.13.

16 15

Large page base address I
Small page base address

12 11 10 9 8 7 6 5 4 3 2 1 0

00

ap3 ap2 ap1 apO CB 01

ap3 ap2 ap1 apO CB 10

11

Translation
fault

Large page

Section

Reserved

Figure 6.13 Level Two Descriptors

The two least significant bits [1..0] of the descriptor encode the page size
or its validity as shown in Table 6.8.

Table 6.8 Page size and validity

Bits [1..0] Type Comment

00 Invalid Page Translation Fault always generated

01 Large page Indicates that this is a 64K Byte page

10 Small page Indicates that this is a 4K Byte page

11 Reserved Reserved for future use. Currently behaves like
'Invalid'.

The next two least significant bits [3 .. 2] encode the JDC and WB control
bits C and B for the page. These bits indicate whether the region is Cache­
able (that is can be cached by the JDC during reads) or Bufferable (that is
can be written through the write buffer) respectively and were discussed
in the sections Programming the ARM JDC on page 131 and Program­
ming the write buffer on page 133.

The next eight least significant bits [11 .. 4] comprise four two-bit sub­
fields which encode the access permissions ('access permission fields'
ap3 .. ap0) each corresponding to each quarter of the page. ap3 deals with
the top quarter of the page and apO with the bottom quarter.

These access permissions have the same meaning as those for sec­
tions (see Table 6.6) the only difference being that the fault generated if a
permission violation is detected is a 'sub-page permission fault' in this

6.5.5

Memory Management Unit (MMU) 143

instance.
· So, when the MMU translates and checks an address after both a

Level One fetch, which returns a Page Descriptor, and a Level Two fetch,
which returns a sub-page descriptor, the address is resolved for access
permission purposes to a granularity of either 16 kbyte (quarters of a
large 64 kbyte page) or 1 kbyte (quarters of a small 4 kbyte page).

It is worth noting that full page mapping of the 4 Gbyte 32-bit mem­
ory space requires 16 kbytes of physical RAM for the Level One descrip­
tor table and a further 1 Mbyte of physical RAM for the Level Two tables.
It would be exceptional to require this degree of precision in controlling
access to memory, so sections are provided to allow a less memory-inten­
sive solution in return for coarser (1 Mbyte) memory mapping. Of course,
a combination of sections and pages may be used together as a compro­
mise or a section-mapped region could be switched by the operated sys­
tem into a page-mapped region dynamically if required.

Figures 6.14 and 6.15 summarize the page mapping process for both
large and small pages.

MMU faults and CPU aborts

The memory management unit can generate one of four types of fault
during the address-checking process; they are:

• Alignment fault
• Translation fault
• Domain fault
• Permission fault

Furthermore, an external abort (via the processor's' ABORT' input)
may result from an external data access: this might be used to signal a bus
error, for example. An external abort will only occur after the MMU has
tested the address and if it has found no access violations, since otherwise
the access will have already been aborted and never reach the system
address bus.

When the MMU detects a fault it will abort the access and signal the
CPU with the fault condition. The MMU retains status information about
the fault (in the FSR) as well as the faulting address itself (in the FAR).
Either a data abort or a prefetch abort will be signalled to the CPU accord­
ing to the nature of the memory access; the MMU treats them differently,
as discussed below.

Alignment fault

If the Alignment fault bit [1] of the Control Register (register 1) is enabled
(set to 1) the MMU will generate an alignment fault for any data word

(/)
c 0
·u;
c Q

)

x Q
)

~

::I
t5
~

.c

e co
::!!:
a:
<

(

~

31
T

ranslation table base
14

T
ra

n
sla

tio
n

 base

18 bits

31

0
V

irtual address
31

20
19

12
11

T
able index

L2 table index

14
13

Level O
ne e

n
try

I T
ranslation b

a
se

T

able index
l!l
:0

CXl

31
10

Level O
n

e
 D

e
scrip

to
r

P
age table base address

31
10

Level T
w

o translation table e
n

try I P
age table base address

31
12

11

Level T
w

o descriptor
P

age b
a

se
 address

apxx

2
0

b
its

31
12

11

P
hysical a

d
d

re
ss

P
age base address

P
age index l!l

:0

"'

0 D
o

m
a

in

checking

A
ccess p

e
rm

issio
n

f~~ak~~9we
co

n
tro

l b
its

c 0

~

Cii
c
jg Q

)
C

l
«!
c
.

Q
)

ei
j """ r
-

"' ~ ::J
C

l
iI

,, ca
·

c:

Ci>

!'>

.....
.

0
1

en

3 ~

"O

Il
l

co

(!
) ~

::
l en
 ![

()
"

::
l

31
 T

ra
ns

la
tio

n
ba

se

14

0
31

 T
ab

le
 i

nd
ex

12
 b

it

14

T
ra

ns
la

tio
n

ba
se

31

10

P
a

g
e

 ta
bl

e
ba

se
 31
 P

ag
e

ta
bl

e
ba

se

31

16

P
ag

e
ba

se

P
ag

e
ba

se

2
0

1

6

Le
ve

l 2

in
de

x
P

ag
e

in
de

x

D
o

m
ai

n

ch
e

ck
in

g

2
0

16
 1

5 P
ag

e
in

de
x

11
6

bi
ts

0 A
cc

e
ss

 p
e

rm
is

si
o

n

fJ'
CCa

k~~
"'B

 co
n

tr
o

l
b

it
s

0

s: ct>
 3 0 -< s: Q
l

::J

Q
l

(
0

ct>

 3 ct>

::J
 - c ::

J - - s: s: c -
..

.i:>
.

0
1

146 ARM architecture extensions

access whose address is not word-aligned (that is the two LSBs are not
00). This will occur irrespective of whether the MMU is enabled. Align­
ment faults will not be generated or any instruction prefetches nor on any
byte operations. After an alignment fault no further permission checking
will occur.

Translation fault

Two different kinds of translation fault may occur according to whether
the address in question is a member of a section or a page:

• A Section translation fault occurs if the Level One descriptor is
invalid (descriptor type codes 00 and 11),

• A Page translation fault occurs if the Level Two descriptor is invalid
(page size codes 00 and 11).

Domain fault

Two different kinds of domain fault may occur according to whether the
address is a member of a section or a page. In both cases the Level One
descriptor holds the 4-bit Domain Number which selects one of the 2-bit
domain access permission groups in the Domain Access Control Register
(register 3):

• For sections the domain number is taken from the Level One
descriptor

• For pages the domain is taken from the Level Two descriptor

The two access permission bits for the domain number in question
are checked as described earlier. The access permissions are one of: 'No
access' (00), 'Client' (01), 'Reserved' (10) or 'Manager' (11). If the resulting
access permission is either 'No access' (00) or 'Reserved' (10) then either a
Section Domain fault or a Page Domain fault occurs, as appropriate.

Permission fault

Two kinds of permission fault may occur, according to whether the
address is a member of a section or a page (see Table 6.9). If the domain
access permission group is 'Client' (01) then permissions are checked as
follows:

• For sections the 'ap' bits [11..10] of the Level One descriptor
determine whether the access is allowed according to the table used
earlier and reproduced below. Note that the interpretation of these
bits is dependent on the 'System flag' bit [8] of the Control Register.
If the access is not allowed a Section Permission fault is generated.

• For sub-pages the Level One descriptor has specified a page and the
Level Two descriptor contains four 2-bit domain access permission
groups corresponding to the four quarters of the page. The relevant

Memory Management Unit (MMU) 147

pair of bits is interpreted just as for sections but if the access is not
allowed a Sub-page Permission fault is generated.

Table 6.9 Access permission faults

ap bits
System flag

Supervisor User
Code

(cp#lS, rl,
mode mode

Comment
b8)

00 0 No access No access Fault all client accesses

00 1 Read only No access Read-only in Supervisor
mode

01 x Read /Write No access R/W only in Supervisor
mode

10 x Read / Write Read Fault User mode writes
only

11 x Read/Write Read/ All types allowed in all
Write modes

Data, prefetch and external aborts

Data aborts are acted upon immediately by the CPU and the MMU places
a fault status code FS[3 .. 0] and a 4-bit Domain number in the FSR, as well
as placing the faulting virtual address in the FAR. If more than one type
of access violation occurs simultaneously they are prioritized and the
fault with the highest priority is retained. Consult the ARM600/610 data
sheet for more information on fault priorities.

Prefetch aborts are flagged in the instruction queue when the
instructions are fetched. Only if a flagged instruction is actually executed
(after testing the condition flags) does it cause an abort. Because the
prefetch abort may or may not be acted upon the MMU status informa­
tion is not preserved for the prefetch abort and the MMU does not update
the FSR or FAR.

The ARM600/610 has an external ABORT input (active high) which
may be used by external system logic. It is important to recognize that
some kinds of external memory access can not be restarted, so the ABORT
input must be used with great care. The limitations on restartability are
noted below:

• Uncacheable reads
• Unbuffered writes
• Level One descriptor fetch
• Level Two descriptor fetch

148 ARM architecture extensions

6.6

• Read-Lock-Write sequence
These types of memory access can be aborted and restarted safely.
When aborted the external memory access will cease on the
following cycle. In the case of the Read-Lock-Write sequence the
write will never occur.

• Cacheable reads (cache line fetches)
A line fetch may be aborted safely provided the abort is flagged on
the first word (word 0) of the transfer. Otherwise the cache will
contain at least one line (four words) of corrupt data and the
instruction may not be restartable.

• Buffered writes
Buffered writes cannot safely be aborted because the instruction
execution pipeline within the processor will have moved on by the
time the write is aborted, losing the necessary state information
which might have allowed the instruction to be restarted.
Nevertheless, the FSR does correctly record that such a fault ('Write
buffer fault') has occurred; the FAR contains the address of the first
operation which was aborted.

Systems should be configured so that buffered writes are not per­
formed to areas of memory which are capable of generating an external
abort.

Summary

The ARM QuickDesign service offers a number of extensions which add
functionality to the ARM processor cores and implement options in a
building block style. Among these are the memory management unit,
which uses patented technology to implement a memory management
system aimed at fully object-oriented systems, instruction and data
caches, write buffers, and the coprocessor interface which connects
coprocessors via a fast 32-bit data bus.

Other architectural extensions will be added to the QuickDesign
range as customer requirements dictate.

7.1

7.1.1

7
ARM CPU hardware and
interfacing

Introduction

This chapter examines the external hardware interfaces of members of the
ARM6 processor family, including the ARM60/61, ARM600 and ARM610
processors.

The ARM6 processors share a common instruction set and support a
32-bit linear address space into which 1/0 devices are also mapped. Sev­
eral processor operating modes are supported which form the basis of the
memory management and protection systems.

Simple ARM6 family processors

The ARM60 is a single-chip 32-bit RISC processor with a 32-bit address
space and support for either big-endian or little-endian operation. It is
based on the earlier 26-bit address space ARM2aS core, but it is housed in
a new package and has a new pinout. The alterations needed to provide
the 32-bit address space mainly affect the design of the processor inter­
nally, although it does of course have 32 address pins instead of 26 on the
outside. The ARM60 has no cache or other architecture extensions: it is a
straightforward 32-bit address/ data bus processor which can operate at
clock frequencies of up to 25 MHz (Spring 1993).

The ARM61 is a special bond-out variant of the ARM60 which is
hard-wired to operate in 26-bit address modes and is pin-compatible with
the earlier ARM2.

149

150 ARM CPU hardware and interfacing

7.1.2

7.2

7.3

High-integration ARM6 family processors

The ARM600 and ARM610 include the full range of architectural exten­
sions described in Chapter Six. They differ electrically from each other
only in that the ARM610 does not feature the coprocessor interface of the
ARM600. This was removed to allow the device to be cost-effectively
packaged. As a result the ARM610 is housed in a particularly small car­
rier, the 144-pin Thin Quad Flat Pack (TQFP), which requires the finished
silicon die to be ground down from the underside to reduce its thickness
to less than one millimetre before packaging.

The ARM610 in its 144TQFP package is 1.4 mm thick, about the size
of a postage stamp and delivers 15 to 20 MIPS at 20 MHz while consum­
ing around 10 µA of static current plus 5 mA per MHz of clock speed.

The ARM600 bus interface

The ARM600 is the fourth generation of ARM processor and its bus inter­
face reflects this by sharing many signals in common with earlier ARM
processors. Central to the ARM600 bus interface are the two major buses:
the Address bus (32 bits) and the Data bus (32 bits). The Address bus is
only ever an output from the processor, while the Data bus is, of course,
bi-directional. Figure 7.1 shows the ARM600 bus interface.

The bus interface can be divided into a number of distinct groups of
signals:

• Clock inputs and wait state control
• Address bus and control signals
• Data bus and control signals
• Interrupt inputs and Reset
• Coprocessor interface (not ARM610)
• Bus enables and test inputs

These are discussed in turn below.

Clock inputs and wait-state control

Two clock inputs, 'FCLK' and 'MCLK' control the frequency of operation

Clock inputs and wait-state control 151

Clocks [

Interrupts [

Controls [

Bus
controls

Power

Test

[

--

Sn A --FCLK --MCLK _ -nWAIT _

-
nlRQ --nFIQ --

nTEST _ -nRESET _

-
ABE --
DBE --
CBE - ARM600

-
MSE --
CPE --
VDD --vss --
TCK --
TDI --
TDO

TMS --nTRST _

-
Figure 7.1 The ARM600 bus interface

'
A[31 :0]

A '
V D[31 :0]

~
nRIW --nB/W --LOCK -~

nMREQ --SEQ -
ABORT--

-cPCLK -
nCPWT-

CPSPV -
nCPOPC-

-
nCPI -
CPA -

~ - CPB --

'
/ CPD(31:0]
'\ .

J

J

J
J

Address bus

Data bus

Control bus

Memory
interface

Coprocessor
interface

of the two major parts of the ARM CPU: its processor core and its external
memory interface. Typically the core clock will be around twice as fast as
the memory clock, for example 24 MHz and 12 MHz.

The core clock signal is known as the Fast clock or FCLK. The CPU
core may be clocked at a significantly higher frequency than the memory
interface because it communicates only with other parts of the processor,
at most a few millimetres away on the chip.

The memory interface, on the other hand, is expected to drive low­
cost commercial dynamic RAM (DRAM) devices with limited speed and
cycle times; the memory interface clock is known as MCLK. It is possible
to build ARM-based systems whose memory runs as fast as the CPU core,
but although this performs significantly faster it is prohibitively expen­
sive at present.

152 ARM CPU hardware and interfacing

7.3.1

7.3.2

Synchronous and asynchronous clock modes

Each time the ARM600 switches between the FCLK and the MCLK dur­
ing execution a time penalty is incurred in waiting for the appropriate
synchronization between the two clock signals before making the switch.
This penalty is symmetric and varies between zero and one whole period
of the new clock (that is that to which the core is resynchronizing).

To ameliorate this effect it is possible to employ clocks which are
derived synchronously from the same source, in which case no re-syn­
chronization is required. The 'SnA' input to the ARM600 is used to indi­
cate whether the FCLK and MCLK are synchronous (SnA high) or
asynchronous (SnA low).

All off-chip memory interface signals are timed with respect to
MCLK: each memory cycle is defined as the period between two consecu­
tive falling edges (that is high-low transitions) of MCLK. The processor's
address and control signals change during the high period of MCLK (that
is after the low-high transition) and apply to the following cycle.

Variations in MCLK cycle speed

The most straightforward manner in which the external memory cycle
time may be varied, typically to accommodate DRAM access and cycle
timing requirements, is to stretch either or both of the LOW and HIGH
phases of MCLK.

To allow some flexibility in the timing of external memory accesses
the ARM600 has a further control input, 'nWAIT', which may be asserted
to extend the duration of a memory access. When nWAIT is asserted
(low), extra MCLK cycles are inserted into memory accesses until nWAIT
is de-asserted, thus allowing arbitrary timing to be selected by external
circuitry (for example memory or peripheral controllers). nWAIT must
only change while MCLK is low: it has the effect of stretching the low
period of MCLK.

Before the nWAIT input was introduced (on the ARM3 processor)
insertion of wait states required external logic to extend the low period of
MCLK. In fact, either the low or high periods of MCLK may be stretched
but it is usual to stretch the low period as this allows memory manage­
ment hardware to abort the cycle in time for the next rising edge of
MCLK, as the processor specification requires. Dynamic processors such
as the ARM3 impose a limit on the maximum hold time for MCLK to
ensure reliable data retention; the static ARM600 has no such restrictions.

Refer to the ARM600 Datasheet for more detailed information con­
cerning clocks and the ARM bus interface.

Address bus and control signals 153

MCLK

0[31 :0)
A~Ao~~~~-+-~~~-+-~~~--+-~~-<

7.4

Figure 7.2 Use of the nWAIT pin to stretch timing cycles

Address bus and control signals

The 32-bit Address bus A[31..0] indicates the address requested for a
memory access as the result of an instruction or data fetch by the CPU.

Associated with the address bus are two outputs which indicate the
internal state of the processor during bus cycles: Memory Request (writ­
ten nMREQ) and Sequential (written SEQ). Only two of the possible four
combinations of these signals have defined meanings for the ARM6 mem­
ory system: bus cycles are flagged as either Active or Latent, that is they
do, or do not, access memory. The encodings of these signals are shown in
Table 7.1.

Table 7.1 Access bus control signals

Memory cycle type nMREQ SEQ

undefined 0 0

Active (A) 0 1

Latent (L) 1 0

undefined 1 1

Chapter 2 showed that some ARM CPU cores use the other two cycle type
encodings to represent non-sequential and coprocessor cycles. The
ARM600 memory system makes the distinction between sequential and

154 ARM CPU hardware and interfacing

non-sequential memory accesses externally by either driving nMREQ low
and then high again (non-sequential access) or keeping nMREQ low (sub­
sequent sequential accesses). Internally, a non-sequential cycle is treated
as an L cycle followed by an A cycle.

In effect, the SEQ output is the inverse of nMREQ for the cases cur­
rently defined. The existence of SEQ is attributable solely to the needs of
earlier memory management hardware and it is now otherwise superflu-
ous.

Figure 7.3 shows the timing of a single-word access to memory: both
the case for reading and that for writing are shown.

Figure 7.3 One word read or write

Notice that the address bus becomes valid and the nMREQ signal
changes state during the cycle prior to the data transfer operation itself, a
form of 'pipelining' which maximizes the setup time available for the
memory management hardware to validate the address before the opera­
tion completes.

When more than one word of data is being transferred (for example
when a cache line is being loaded or a multiple-register data transfer
instruction is executing) it becomes significant to know whether or not
the words are at successive addresses: most commercial DRAM supports
a fast-access mode, often known as 'paged mode', which can exploit this
information to reduce access times. The nMREQ signal remains asserted
(low) when subsequent accesses after the first will be at consecutive
addresses or the same address; otherwise it is de-asserted for two cycles
and then re-asserted again to notify the memory subsystem of the change
of address sequence.

Figures 7.4 and 7.5 demonstrate the different effects of sequential
and non-sequential memory accesses on the memory interface signals.

Data bus and control signals 155

MCLK

A[31 :0]
----1---~

nMREQ

W~1+~ ----+-----+------+-< ___ -r-

o[31 :oi -----+-----+------+----<
READ

MCLK

A[31 :0]

nMREO

nR/w, nB/w

7.5

Figure 7.4 Two-word sequential write or read

Figure 7.5 Two-word non-sequential read or write

Data bus and control signals

The 32-bit data bus (D31..0) carries instructions and data from memory to
the processor, and data back to memory, at a width and in a direction
specified by the associated control signals nB /W and nR/W. The nB /W
signal indicates whether a byte (nB/W low) or word (nB/W high) is to be
transferred, while nR/W indicates whether the data is being read (nR/W
low) or written (nR/W high). In common with the memory bus these sig­
nals are asserted in the cycle prior to the transfer to allow plenty of time
for the memory management system to interpret the cycle.

156 ARM CPU hardware and interfacing

7.5.1

7.5.2

When nR/W is low (during a read cycle) the data must be set up on
the data bus before the falling edge of MCLK in the active cycle. When
nR/W is high (during a write) the data bus becomes valid during the first
half of the latent cycle preceding the active cycle and remains valid
throughout the active cycle.

Byte addressing

ARM processors view memory as a linear sequence of bytes upon which
both byte and word (4-byte) operations are allowed. All ARM instructions
occupy a word and data quantities are also often words. However, the
single register data transfer instructions such as LOR, STR and SWP may
all be followed by the optional B suffix to reference a single byte at a time.

The two least significant address lines, AO and Al, encode which
byte is being addressed; the ability of the ARM600 processor to be config­
ured to have either a little- or big-endian view of byte ordering makes a
tabular approach the only safe way to show this (Tables 7.2 and 7.3).

Table 7.2 Big-endian, from higher address to lower

31 .. 24

8

4

0

23 .. 16

9

5

1

15 .. 8 7 .. 0

10 11

6 7

2 3

Table 7.3 Little-endian, from higher address to lower

31 .. 24 23 .. 16 15 .. 8 7 •. 0

11 10 9 8

7 6 5 4

3 2 1 0

Locked bus operations

Word address

8

4

0

Word address

8

4

0

In common with the earlier ARM3, the ARM600/610 processors support
the data swap instruction SWP, which reads the contents of a memory
location and exchanges it with that of CPU registers before writing a new

MCLK

A[31 :0)

Interrupt inputs and reset 157

value back to memory. The instruction is intended to be performed indi­
visibly, that is without any danger of the read and write parts of the proc­
ess being interrupted, to provide for interlocks in multi-processor
systems.

To indicate that a bus cycle should be allowed to complete unhin­
dered the 'LOCK' signal is asserted by the CPU throughout the four
cycles that are required to complete the instruction. Figure 7.6 shows the
process in detail.

----+---~

nMREQ

LOCK

nRW

0[31 :0) -----+-----+-----+--'_ea_d-<

7.6

writ'.,___--+./

Figure 7.6 Read locked write

Interrupt inputs and reset

The ARM600/610 CPUs have two interrupt inputs; nIRQ and nFIQ. Of
the two, FIQ has the higher priority and some architectural effort has
been put into minimizing the latency (delay) in servicing a FIQ interrupt,
for example the large FIQ mode register bank and the placement of the
FIQ entry in the vector table. This makes FIQ well-suited to low-latency
high-bandwidth data transfers such as those required by disk controllers
or other unbuffered peripherals.

Each kind of interrupt may be enabled and disabled under software
control by altering the state of the I and F flags in the CPSR (not possible
from User mode). When the relevant flag is set then interrupts of that
type are disabled. The I and F flags are set automatically upon entry to a
FIQ service routine to disable IRQs while the FIQ is being serviced. If an
IRQ occurs while I is set then the IRQ will be processed as soon as the I
flag is cleared again upon exit from the service routine. I is also set when
an IRQ is being serviced.

158 ARM CPU hardware and interfacing

7.6.1

7.7

Both interrupt inputs are asynchronous and level-sensitive (active
low) so in order to generate an interrupt successfully the relevant input
must be held low, until the processor responds by addressing the inter­
rupt-generating hardware to disable the source. A single-cycle (of FCLK)
delay is imposed for synchronization before the flow of execution is
affected.

Reset input

The 'nRESET' input is used to restart the processor from a known
address; it is an active-low level sensitive input which must remain low
for at least 2 FLCK cycles and 5 MCLK cycles to be recognized reliably.
Upon recognition of the Reset condition the processor terminates the cur­
rent instruction and disables the on-chip IDC, WB and MMU before re­
starting at address &00000000. This address, the 'Reset vector' is the first
entry in the vector table discussed in Chapter 5.

Throughout the period during which nRESET is held low the CPU
core performs latent (idle) cycles with incrementing addresses: that is
address bus pins A31..A2 count upwards as if they were a 30-bit binary
counter. Note that the bottom two address bits (Al, AO) used to distin­
guish between bytes are not involved in this and both remain low. This
feature has some attractions during testing as it allows the address bus to
show a different signal on every line, very useful in helping to find faults.

Coprocessor interface

The coprocessor interface is only present externally on some variants of
ARM processors, notably the ARM3 and the ARM600. The ARM610,
while it has no external coprocessor interface, nevertheless has an on-chip
system control coprocessor which is used to control the IDC, WB and
MMU. Typically, the external coprocessor interface will be used to add
the floating-point support coprocessor known as FPAlO (or its successors)
into ARM-based systems: a socket is usually provided into which users
requiring high-performance floating-point arithmetic may plug the FPA.
Software emulation of the ARM floating-point instruction set allows users
of ARM-based computers without the coprocessor socket to execute the
same software without modification.

The coprocessor interface allows extra functionality to be added to
the processor in a tightly-coupled fashion. It has its own 32-bit data bus,

7.7.1

7.7.2

7.7.3

Coprocessor interface 159

the Coprocessor Data bus CPD[31..0], and control signals, all of which
operate at the CPU core frequency, FCLK, imposing tight limits on the
maximum separation distance and speed characteristics of any coproces­
sor devices.

Coprocessor interface clocks

CPCLK (Coprocessor clock) is an output from the ARM that provides the
clock against which all coprocessor communication is timed. This clock
switches between FCLK and MCLK according to whether the ARM is
performing a latent (internal) or active (external) cycle, respectively.
Coprocessors must thus be able to work at FCLK speeds to operate cor­
rectly.

nCPWT is an output from ARM which is used to qualify the coproc­
essor clock CPCLK: it must be gated with CPCLK within the coprocessor
to time coprocessor operations.

Coprocessor data bus

The coprocessor data bus CPD[31..0] is a bi-directional bus used for all
data transfers between the ARM and external coprocessors.

When a coprocessor instruction is being broadcast the ARM outputs
the instruction while CPCLK and nCPWT are high. Coprocessor instruc­
tions are broadcast unaltered, but non-coprocessor instructions are
replaced by the last coprocessor instruction broadcast with CPD[26]
forced low (making it invalid as a coprocessor instruction).

When data or registers are being transferred between ARM and a
coprocessor the data becomes valid while CPCLK and nCPWT are high.
When data is being transferred from coprocessor to ARM the data must
be valid at the falling edge of CPCLK.

Coprocessor control signals

The signals CPCLK, nCPOPC, nCPI, CPA, CPB and CPSPV are used to
control the handshaking between the ARM and any coprocessors while
instructions and data are transferred on CPD[31..0].

CPCLK is the coprocessor clock signal against which all coprocessor
bus transactions are timed. Its frequency varies between MCLK and
FCLK to track the CPU activity. This means that coprocessors must be
able to operate at FCLK speeds.

nCPOPC (Coprocessor opcode fetch) is asserted as each instruction

160 ARM CPU hardware and interfacing

7.8

is fetched by the ARM and re-broadcast on the CPD[31..0] bus: valid
coprocessor instructions are broadcast unaltered, but non-coprocessor
instructions have CPD[26] forced low to signal their invalidity. Note that
its name is a little misleading: this signal is for coprocessors, but it is
asserted for all instruction fetches.

nCPI (Coprocessor instruction) is asserted by the ARM when any
coprocessor instruction is executed (that is only if condition codes are sat­
isfied): the ARM then waits for a response from the coprocessor chain
(there may be several) signalled on the CPA and CPB lines.

CPA (Coprocessor Absent) is asserted immediately after nCPI by
any coprocessor which can execute the instruction. CPA is sampled by
ARM on the next occasion that CPCLK is low: if CPA is sampled low
ARM will busy-wait until CPB becomes low and then complete the
instruction; if it is high when sampled the ARM will abort the coprocessor
instruction and take the undefined instruction trap. CPA must be tied
high when no (external) coprocessors are present.

CPB (Coprocessor busy) may be asserted by the coprocessor to indi­
cate that the instruction announced by ARM on CPD[31..0] cannot be exe­
cuted by the coprocessor: CPB is driven high until the coprocessor ceases
to be busy; CPB is driven low either immediately or after the coprocessor
ceases to be busy. CPB is sampled when CPCLK and nCPI are both low.
CPB must be tied high when no (external) coprocessors are present.

CPSPV (Coprocessor supervisor mode) indicates the CPU mode in
which instructions broadcast to coprocessors were fetched: CPSPV is high
in Supervisor, FIQ and IRQ modes and low for User mode. Coprocessors
may use this information to prevent certain instructions from being exe­
cuted in User mode. CPSPV changes while CPCLK and nCPWT are high.

In summary, when a coprocessor instruction is ready to execute
nCPI, CPA and CPB are all sampled by both the ARM and coprocessors at
the next rising edge of CPCLK - if all three are low, the instruction is com­
mitted for execution.

Bus enables and test inputs

The ARM600 and ARM610 have a number of pins devoted to enabling
and disable various off-chip interface functions and for testing the device
both after fabrication and once the device is in-circuit in a finished design.

7.8.1

7.8.2

Bus enables and test inputs 161

TheARM600

The ARM600 has five bus control inputs known as ABE, DBE, CBE, MSE
and CPE: these signals are active-high enable inputs for signals generated
by ARM. Table 7.4 summarizes the relationship between the enable sig­
nals and the system signals they relate to.

Table 7.4 Relationship between enable and system signals

Enable signal

ABE

DBE

CBE

MSE

CPE

System signal

Address bus A[31..0]

Data bus D[31..0]

Control bus (nB / W, LOCK & nR/W)

Memory signals (nMREQ and SEQ)

Coprocessor bus (CPD[31..0], CPCLK, CPSPV, nCPI, nCPOPC
andnCPWT)

Any bus enable input which is low will put the relevant ARM out­
puts into a high-impedance state. These signals may be used to control
the presentation of ARM signals to common buses; in simple applications
they will simply be strapped high.

A production test mode is supported by the nTEST pin: ARM600
enters a special test mode when this pin is driven low; it must be strapped
high when the processor is in-circuit.

Finally, ARM600 supports the IEEE 1149.1-1990 JTAG Boundary
Scan standard for in-circuit testing: the five pins TCK, TDI, TDO, TMS
and nTRST are used to control the boundary scan circuitry. The IEEE
JTAG standard allows devices which implement it to be connected
together in a serial daisy-chain to allow both in-circuit device testing and
continuity testing between devices. Consult the ARM600 datasheet for
further information.

TheARM610

The ARM610 has subtly different bus control and test inputs. Three of the
five bus enables are still present: ABE, DBE and MSE. The ARM600 con­
trol signal CPE is absent because, of course, there is no coprocessor bus to
enable. CBE is also absent and is replaced by 'address latch enable' (ALE)
which allows the address bus A[31..0] and nB/W, LOCK, and nR/W to be

162 ARM CPU hardware and interfacing

7.9

latched (and prevented from changing) when driven low; presumably
this simplifies the design Apple has in mind.

The ARM610 also supports the IEEE JTAG Boundary Scan standard
using the associated five pins; it also has a broader test interface for out­
of-circuit testing: 17 pins known as TESTIN[l6 .. 0] and a further three pins
known as TESTOUT[2 .. 0] complete the test complement. The operation of
this test interface is beyond the scope of this book.

Memory management, cache control and
multi-processor support

The combination of the many separate bus enable inputs with flexible
CPU clock control (including the nWAIT input) and the nMREQ and
LOCK outputs provides enough control over the bus interface to allow
modern ARM processors (that is ARM3 and later) to be employed in mul­
tiprocessor systems in conjunction with external logic.

The nMREQ signals from several processors might serve as inputs
to a central bus arbitrator implemented in custom logic. The bus arbitra­
tor would determine which of the processors or other bus claimants
should gain control of the bus at any moment and exploit the bus enables
and nWAIT inputs to the processors to stall those that were denied the
bus. The LOCK signal from each processor must also be considered in
order to ensure indivisible memory accesses to allow inter-processor
communication.

7.10 Summary

The ARM processor family supports a simple and consistent bus interface
for attachment to external memory and peripherals. Particular considera­
tion has been given by the ARM designers to the needs of customers with
low-power and low-cost requirements.

Sufficient CPU status signals and bus enables are available to allow
ARMs to be connected almost gluelessly to commercial static memories
and peripherals. Where dynamic memories must be supported an exter­
nal DRAM controller will be required to multiplex address signals.

The presence of JTAG boundary scan circuitry in recent ARM proc-

Summary 163

essors substantially improves the in-circuit testability of these complex
devices.

Multi-processor support is present in the form of the LOCK signal
and the individual bus enables for each sub-group of bus signals, allow­
ing an external arbitrator to determine which CPU is active on a shared
bus from moment to moment.

8.1

8.2

8
ARM CPUs, derivatives and
support ICs

Introduction

This chapter lists all the variants of ARM processor and support chips
which have been developed. Not all of these have been available com­
mercially and some were designed for highly specific purposes. How­
ever, by examining the many variants of each ARM design it is possible to
see the direction of ARM development.

For each ARM variant a simple block diagram is provided, as well
as a summary of the ARM macrocells used to build each processor.

The chapter concludes with a look at possible future ARM processor
developments, especially the ARM7 processor core and its potential
derivatives.

Variants of the ARM CPU

The ARM CPUs are effectively divisible into two categories; the original
dynamic processors and the current static processors. In each category
there are both standalone CPUs and processors with other functions, such
as caches, coprocessor interface and memory management hardware,

165

166 ARM CPUs, derivatives and support ICs

8.2.1

integrated on to the chip.

The dynamic ARMs: ARM1, ARM2, ARM3

ARM1

The first ARM CPU, the ARMl, was successfully fabricated for the first
time and proved to be fully functional in April 1985. A 3 µm fabrication
process was used on the 25 000 transistor device. Although designed to
operate with a 4 MHz clock, the device was found to still operate reliably
at 8 MHz, twice the design speed; a tribute to the care which had gone
into the device modelling, all of which was written in BASIC.

ARM2

Before the ARM CPU was employed in a complete computer system
design a number of small refinements were undertaken: the multiply unit
was added, so too was the coprocessor interface, and finally the device
was shrunk to the next smaller fabrication process (2 µm) for good meas­
ure. The resulting device, known as ARM2, has been shipped in quanti­
ties of hundreds of thousands in Acorn Computer's Archimedes
workstations, used mainly in Europe and the UK but also in Australasia.
In these workstations it is used with its three support devices, the mem­
ory controller MEMC, the video controller VIDC and the 1/0 controller
IOC.

The ARM2 was first shipped running at a clock rate of 8 MHz, but
even at this relatively sedate speed still delivered about 4 MIPS when
attached to (slow) 120 ns commercial dynamic RAM. Since then, ARM2
has been commercially offered in 10 MHz and 12 MHz speeds, still yield­
ing a performance of about half the clock rate in MIPS.

ARM2 has been used in a number of commercial products besides
Acorn's workstations:

• Radius Inc. used ARM2 in one of its first graphics accelerator prod­
ucts for the Apple Macintosh, the QuickColor NuBus card designed
to accelerate QuickDraw graphics redrawing on colour Macintosh
systems.

• MicroRobotics of Cambridge, England, used ARM2 in its robotics
controllers widely used in the animation industry. Teenage Mutant
Ninja Turtles (The Movie) used animatronic robot turtles which were
controlled by an ARM-based real-time processor.

ARM3

The third ARM revision, the ARM3, was a significant upgrade in both
design and fabrication technology. It was also the first time that the

8.2.2

Variants of the ARM CPU 167

macrocell approach had been used in the design of an ARM processor.
The ARM3 exploits the small size of the ARM2 CPU core and adds to it a
4 kbyte on-chip cache which provides cached data in a single clock cycle
(see Figure 8.1). At the same time, the fabrication process was shrunk
another couple of steps to allow a significant increase in clock rate.

The ARM3 comprises some 300 000 transistors, more than ten times
as many as ARM2 and yet still small by contemporary microprocessor
standards (the Intel 80486DX has roughly 1200 000). ARM3 is capable of
operating at 25 MHz when fabricated in a 1.2 µm process and at 33 MHz
when fabricated in a 0.8 µm process. At these speeds it typically yields
some 13-15 MIPS, yet still requires only relatively slow commercial
DRAM.

Even with its transistor-hungry cache the ARM3 is still a compact
device: so compact, in fact, that at the point of sealing the finished dies
into standard ceramic pin-grid-array packages it was discovered that the
die was too small to fit. A different package supplier was eventually cho­
sen to resolve this rather unusual problem.

ARM3 has the great attraction that it may be retro-fitted into exist­
ing ARM2-based designs. While not pin-compatible (the ARM3 has many
more pins to support its coprocessor interface) a simple printed circuit
board can adapt the pinout to that of the ARM2 and allow it to be
plugged into an ARM2 socket. A number of UK-based companies includ­
ing Aleph One Ltd of Cambridge, UK offer such upgrades for the
machines produced by Acorn Computers.

The first static ARM: ARM2aS

At about the same time as the ARM3 went into production a separate
effort was underway to tackle a different aspect of the ARM's design: the
use of dynamic logic. Many VLSI devices use dynamic logic for its sim­
plicity, but it does require a minimum level of clock activity to be occur­
ing in order for data not to be lost; this in turn mandates that the device
must consume a non-trivial amount of power (related to the minimum
clock rate) even when idling.

For modern applications, particularly portable ones, minimizing
power consumption is a significant issue and static logic which doesn't
require a minimum clock rate is preferred. Static logic may simply be
stopped, by stopping the clock, whereupon it only consumes a meagre
amount of power until the clock is re-enabled. No data is lost during this
process.

The ARM2aS is an ARM2-compatible CPU core macrocell which is
entirely static in its implementation: this device has never been commer­
cially available as a standalone part, but a version of it does appear in the

168 ARM CPUs, derivatives and support ICs

Address bus

Address bus interface

Cache

Internal data bus

Data bus interface

Data bus

Clock
generator

CPU

Figure 8.1 ARM3 block diagram

Control
logic

Coprocessor
interface

highly-integrated ARM250 device discussed later in this chapter.
ARM2aS was intended to be used as the processor core of an integrated
device, Hercules, in a handheld computer and communications device,
which was never actually produced.

ARM2aS' main contribution to the development of ARMs was to
move the devices from dynamic to static technology, and focus both mar­
keting and development efforts on processors suitable for the emergent
low-cost consumer and hand-held device market. It also contained a
faster ALU unit. Sample ARM2aS devices were produced, using a 2 µm
process. All subsequent ARM processors have supported static operation.

In terms of its features ARM2aS is more like ARM2 than subsequent
ARMs. Like ARM2 it has a 26-bit address space, and only supports little­
endian byte sex.

"' ::J .c

3
<(

Address bus

(/)
::::>
Ill

~
ADDRESS
INCREMENTER

REGISTER BANK
(31 32-bit registers)
(6 status registers)

(/)
::::>
Ill
<(

BOOTH's
MULTIPLIER

32-BITALU

WRITE DATA REGISTER

Data bus

(/)
::::>
Ill
a:
UJ
f­z
UJ
::;;:
UJ
a:
()

~

(/)
::::>
Ill
Ill

Figure 8.2 ARM6 core block diagram

Variants of the ARM CPU 169

INSTRUCTION
DECODER
&CONTROL
LOGIC

Data bus

170 ARM CPUs, derivatives and support ICs

8.2.3

8.2.4

The 32-bit ARMs: ARM6, ARM60, ARM61

The ARM6 series of RISC CPUs is the fourth generation of ARM devices.
All are static ARMs, following on from the development of ARM2aS. The
ARM6 processor core was developed before the launch of ARM Limited,
although some of the devices incorporating it were completed after ARM
had been founded.

When Advanced RISC Machines Ltd. was spun off from Acorn it
rationalized the ARM part numbering system at the point of introduction
of these devices: single-digit ARMs, for example ARM6, are CPU cores
which are not available by themselves; two-digit part numbers are
assigned to packaged cores, for example ARM60 and ARM61; and three­
digit part numbers are assigned to complete processor designs with many
architectural extensions integrated together, for example ARM600 and
ARM610.

The ARM6 series differs significantly from the earlier ARMs in hav­
ing a 32-bit address space rather than a 26-bit address space. This change
leads to a number of major alterations to the architecture of the CPU core:
condition flag and CPU mode bits can no longer occupy spare bits of the
program counter, so new status registers and associated instructions must
be created.

At the same time the 32-bit ARMs developed the ability to operate
with either little-endian or big-endian memory, a feature which was sig­
nificantly influenced by Apple Computer, whose traditional Motorola
680x0-based designs assumed the opposite endedness to earlier ARMs.

The standalone ARM6 core is available in two packaged variants:
ARM60 and ARM61. The former has a new pinout which straightfor­
wardly brings out the necessary bus and control signals; the latter is pack­
aged in an 84-pin PLCC package with the same pinout and configuration
as the earlier ARM2, allowing it to be retro-fitted to existing designs for
evaluation. These devices have effectively replaced the ARM2 since they
provide a superset of its functionality.

Future ARM processors

Although not yet announced by ARM Ltd, a number of obvious routes for
development are open to the ARM processor family:

• Larger integrated caches, possibly with different associativity and/
or organization

• Integration of the FPA with the CPU core
• Use of 'self-timed' or 'asynchronous' CPU cores (see below)
• Low-powered versions
• Multiple processors on one device

Variants of the ARM CPU 171

Larger cache

Since the addition of the 4 kbyte processor cache to the ARM3, such
caches have become both larger and more commonplace. The macrocell
approach to ARM processor design means that it would be easy for larger
caches to be offered in integrated devices based on future ARM processor
cores capable of supporting larger caches.

Lower power

Many components, particularly those intended for use in portable and
battery-powered designs, are now available in low-power (3.3 V) vari­
ants. It is likely that any future ARM processor cores and derivatives will
be offered in this lower voltage.

Integration density and fabrication size

The construction of larger caches is really only an issue of fabrication fea­
ture size: if the CPU core is smaller then more space is available for cache
memory in the same die area, and that cache is in turn more dense. Inte­
gration of the FPA is similarly an issue of feature size: both the CPU core
and the FPA will be smaller at reduced feature sizes, so a processor which
includes both need not have a significantly larger die area.

Self-timed/asynchronous designs

Looking further into the future, advanced research by members of the
ARM team provide clues to possible developments which may be incor­
porated into future ARM processors. Professor Stephen Furber of Man­
chester University, the original architect of the ARMl, continues to
research new developments of the ARM. At the time of writing a 'self­
timed' ARM was about to be experimentally fabricated: 'self-timing'
means that no clock signal is used to control the flow of data through the
CPU core; instead, the data flows through as fast as the fabrication proc­
ess used allows, so smaller feature sizes directly yield increases in per­
formance without the need to change clock frequencies.

Of course, the CPU must always ultimately be interfaced to mem­
ory; although a self-timed cache can easily be constructed to provide the
first level of memory, high-density self-timed system memory is not yet
commonplace. In the meantime, circuitry must be added to synchronise
the core to the external memory clock whenever an off-chip access is
required. It will be interesting to see what kind of performance improve­
ments result from the self-timed approach (Pountain, 1993).

172 ARM CPUs, derivatives and support ICs

8.3

8.3.1

ARM derivatives and support ICs

This section discusses those ARM processors which comprise ARM pro­
cessor cores integrated with other controller macrocells.

The ARM250: a highly integrated ARM-based computer

The ARM250 is the result of a design commission from Acorn Computers
Ltd to produce a single-chip computer based on the 26-bit ARM2 archi­
tecture. It integrates on to a single chip the latest versions of the original
four-chip ARM set, along with additional glue logic.

Requirements for the ARM250

During the 1980s Acorn manufactured a variety of desktop personal com­
puters based on a four-chip set comprising ARM2, a memory controller
known as MEMCla, a video and sound controller known as VIDCl and a
glue logic and peripheral 1/0 device known as IOC. These four devices
appeared together in hundreds of thousands of computers; the incentive
driving the design of ARM250 was to reduce Acorn's costs in manufactur­
ing such systems by placing all these controllers on the same chip as the
CPU.

ARM250 components

The ARM250 integrates the static ARM2aS core, MEMCla, VIDCla, IOC
and a further glue logic block known as IOEB, which allows cheap PC­
compatible peripheral ICs to be attached directly to the IOC bus. The
device is fabricated using a 1 µm feature size rather than the 2 µm fea­
tures used for the previous (separately packaged) versions of these
devices; VIDCl originally appeared in a 2.4 µm process.

ARM2as is described above. The MEMC block acts as an interface
between the ARM250 and external ROM and bus RAM. There is a 32-bit
data bus and a 20-bit address bus (only 20 of the ARM250's 26 address
space bits are brought out to pins). Up to 4 Mbyte of RAM can be
addressed directly. MEMC also includes a logical to physical address
translator, which allows the implementation of virtual memory and
multi-tasking operations.

The VIDCla video controller generates a high-resolution colour
video display with a hardware cursor up to 32 pixels wide, and up to
eight channels of stereo sound. A wide range of display formats are sup­
ported, with up to 8 bits per pixel and 4096 colours, using three 4-bit dig­
ital to analogue converters.

The 1/ 0 section of the ARM250 is based on Acorn's original IOC

ARM 2aS

ARM derivatives and support ICs 173

address bus

R/W

MEMC

DRAM address

DRAM CAS

DRAM RAS

ROM select

Data bus enable

s~~~~~ ----ii g!~~~ator
Clock 25

PC strobes

Address
decodes

Clocks

Config

IOEB IOC

1/0 port Interrupts Serial
in in/out

VIDC

Video clock DAC reference
currents

1/0 data bus

Figure 8.3 ARM250 block diagram

Video RGB

Sound

H sync

Vsync

PAL sync

External video
select

chip, with additional glue logic (IOEB on the block diagram) allowing the
ARM250 to be interfaced to PC-compatible peripheral devices through
standard ports.

The resulting ARM250 die is housed in a single 160-pin PQFP pack­
age and yet has more functionality and operates at higher clock frequen­
cies than the four-chip set it replaces.

ARM250 as an example of the standard cell approach

ARM250 is a classic example of the 'building-block' or 'standard cell'
approach to processor construction offered by Advanced RISC Machines,
which operates under the name QuickDesign. Several existing devices
have been arranged on a new die at a finer feature size and wired
together to create the new chip, producing a customized and highly inte­
grated processor offering better performance than the previous non-inte­
grated implementation.

The advantages for Acorn, the customer who requested ARM250,

174 ARM CPUs, derivatives and support ICs

8.3.2

Address buffer

Write
buffer

0(31 :0]

MMU

A[31 :0]

.___re_s_t _ _.I I Clock

4 KByte
Cache

ARM6
CPU

Figure 8.4 ARM600 block diagram

Control

0
(/)
(/)
Q)
u
2
c..
0
()

¢=> CPD[31:0]

are clear: the single-chip implementation is simpler, more reliable and
faster than the previous design while at the same time succeeding in
being cheaper to produce. The resulting computer requires only some
external ROM, RAM and a single PC-compatible peripheral chip to yield
a 6 MIPS RISC workstation, the A3010, which Acom retails for less than
$1000.

The ARM600 and ARM610

As we have seen earlier in this book, the most highly integrated ARMs
based on the ARM6 core available at the time of writing are the ARM600-
series devices. Their development, in conjunction with Apple Computer,
looks set to lead to the wide availability of ARM-based products in the
world market. The two current devices differ in their packaging and func­
tionality.

ARM600

The ARM600 comprises an ARM6 core, a 4 kbyte cache, an 8-word write

8.4

8.4.1

Support devices 175

buffer and a memory management unit along with an external coproces­
sor interface to support the FPAlO floating point coprocessor; it is pack­
aged in a 160-pin Plastic Quad Flat Pack (PQFP). The memory
management hardware is intended to facilitate the design of truly object­
oriented systems (see Figure 8.4)

ARM610

The ARM610 has the same computational elements as the ARM600 but
has no external coprocessor interface. It can therefore be packaged in a
much smaller device, saving further space and reducing the cost, both
desirable options for its target market of low-cost consumer portable
devices. The actual package chosen is the extra-small 144-pin Thin Quad
Flat Pack (TQFP) for inclusion in Apple Computer's personal digital
assistant (pocket-sized portable computer I organizer) known as Newton.

Support devices

This section examines the two ARM support devices currently available
as standalone devices, the floating-point accelerator FPAlO and the video
controller VIDC20.

The ARM Floating Point Accelerator (FPA 10)

The first single-chip coprocessor to be produced for the ARM family was
the floating-point accelerator known as FPAlO. This device performs
IEEE 754-conformant floating-point arithmetic at single, double or
extended precision (80 bits) at up to 5 MFLOPs when clocked at 25 MHz;
it is housed in a 68-pin PLCC package and is fully static, consuming
around 2.5 mA/ MHz (that is about 63 mA at 25 MHz).

The FPAlO implements a subset of the ARM floating-point instruc­
tion set (discussed in Chapter 4) in silicon. The balance of the floating­
point instructions are performed in software through the use of the Unde­
fined Instruction trap, which passes on to support software any instruc­
tions obeyed by the CPU which are not implemented in hardware by the
FPAlO. Together the hardware and software fully implement the IEEE
standard for binary floating-point arithmetic.

The design of the FPAlO is intended to maximize the performance/
power, performance/ cost, and performance/ die size ratios while provid­
ing balanced floating point versus integer performance for ARM-based

176 ARM CPUs, derivatives and support ICs

Instruction
issuer

L-

o
rJl
rJl
Q) Q)
oo
o ro
L- 't: a. Q)
o-
() .£;

EJ
Figure 8.5 FPA 10 block diagram

systems, according to ARM Ltd.

RISC principles and the FPA 1 O

CDP[31:0]

Load/store
unit

Register bank

Arithmetic
unit Test

interface

RISC principles have been employed to ensure this, along with other
advanced design techniques. Firstly, only the core floating point instruc­
tions are implemented in the FPAlO. These are: basic arithmetic opera­
tions, compare, absolute value, round to integral value, floating-point to
integer and integer to floating-point conversions, status operations and
most load and store operations. Other instructions, including trigonomet­
ric instructions and packed loads and stores, are handed to the support
code through the Undefined Instruction trap, as are all operations on
denormalized numbers, infinities and NaNs (non-numbers), and excep-

Support devices 177

tions other than the inexact exception. By not implementing these less
common instructions in hardware a much smaller and less complex chip
than would otherwise have been necessary was constructed.

Internal structure of the FPA 10

The FPAlO has an 81-bit internal data path between its five main func­
tional blocks. The first block, the coprocessor interface, arbitrates instruc­
tions with the CPU and tells the load/ store unit when to proceed with
data transfers. Like their integer counterparts, all ARM floating-point
instructions are conditional. The conditions are evaluated in the CPU and
only valid instructions are passed to the FPA.

From the 32-bit coprocessor interface the incoming instruction is
transferred to the instruction issuer. This evaluates the instruction to see
whether it should be passed to the arithmetic unit or the load/ store unit.
If an instruction is failed after it has been issued to the load/ store or arith­
metic units, it is cancelled and the data thrown away; if a prefetched
instruction is cancelled after a branch occurs the same happens. The
instruction issuer also obviates some data dependency hazards by pre­
venting issue of the instruction until the hazard has been cleared. Instruc­
tions are issued in order and one per cycle.

The load/ store unit converts data between the 32-bit coprocessor
data bus and the FPA's internal 81-bit format. All numbers are checked
and those which are found not to be normalized or zero are flagged to be
passed to the software FP emulation code.

The register bank contains eight registers which use the FPA's 81-bit
format. Control logic deals with data dependencies and further logic sup­
ports register-forwarding. An additional 33-bit temporary register is used
to transfer intermediate results of FIX, FLT and compare instructions
between the load-store and arithmetic units.

The arithmetic unit has a four-stage pipeline, whose stages are Pre­
pare, Calculate, Align and Round. Some instructions can move through
the pipeline in half-cycle steps, thus taking only two cycles to complete.

FPA 10 compared to other floating point units

At around 130 000 transistors the FPAlO is simple enough to be fabricated
cheaply when packaged in its modest 68-pin PLCC package. It is much
smaller than CISC floating point accelerators; for example, the Cyrix Fas­
Math chip, an Intel 80387 equivalent, has approximately 375 000 transis­
tors.

Using FPA 10 with ARM integer processors

The FPAlO is intended to work with all ARM processors with a coproces­
sor interface, (for example ARM3, ARM600). The ARM60 and ARM2 use
their data bus as the corprocessor bus. ARM-based systems wishing to

178 ARM CPUs, derivatives and support ICs

8.4.2

offer optional floating-point performance can simply provide a socket
into which this device may be plugged, as Acorn Computers does in
some of its more recent RISC workstations.

A second-generation video and audio controller: VIDC20

We saw earlier that the ARM250 integrated a number of devices designed
by Acorn Computers for their earlier range of RISC workstations; a sec­
ond generation of one of these devices, VIDC20, is now in production and
offers considerably improved features suited to the next generation of
desktop computers.

The second generation video controller, VIDC20, does not itself con­
tain an ARM CPU but instead is designed to be attached to the data bus of
an ARM-based system where it can exploit Direct Memory Access (DMA)

d(63:0]

--~1 data
latches

sound CTL

sound FIFO __ ___, t---~

video
FIFO

cursor
FIFO

register
control

video
serializer

cursor
serializer

clock
generator

Figure 8.6 VIDC20 block diagram

horizontal
timing
chain

video
palette

cursor
palette

boundary
scan

vertical
timing
chain

Red

Green

Blue

8.5

Summary 179

to read system memory and retrieve graphics and sound data placed
there by the CPU. It has a 64-bit data bus which requires two banks of
interleaved RAM, although it can also work in 32-bit mode.

VIDC20 is a single-chip video frame buffer controller and RAM­
DAC along with a digital audio interface and stereo digital-to-analogue
audio playback channels.

VIDC20 can generate high-resolution colour video displays at pixel
rates of up to 100 MHz in any of 1, 2, 4, 8, 16 or 32 bits-per-pixel. It can
support video modes at a bandwidth of up to 80 Mbytes per second. In
64-bit mode it supports interlaced displays of up to 640 by 512 pixels. Its
8-bit digital-to-analogue converters give a choice from 16 million colours.

At the same time it can pla back stereo 16-bit CD-quality digital
audio or stereo 8-bit sampled audio through its audio circuitry.

VIDC20 can be interfaced either to commercial DRAM, specialised
VRAM video memory or both to allow a variety of cost/performance
trade-offs. Only a handful of external components are required to connect
the device to a colour monitor or TV modulator.

Summary

The ARM processor has developed considerably since its humble begin­
nings. The current range of processors based around the ARM6 processor
core offer a wide range of solutions for system designs where the ARM
virtues of small size, low power consumption and high size/performance
and price/ performance ratios are useful.

A range of additional support macrocells which can be built on to
the same devices provide flexibility in adding functionality. Further addi­
tional functionality is available in the form of the support devices FPAlO
and VIDC20 which offer features which have not yet been integrated into
any single-device ARM offering.

There are several logical directions ARM' s research and develop­
ment could take; in addition to the prospects for yet smaller or more
highly integrated devices, interesting research into areas such as asyn­
chronous computing could provide a further new direction for the com­
pany.

9.1

9.2

9
The ARM floating point
instruction set

Introduction

This chapter examines the ways in which the ARM architecture deals
with floating point data types and the arithmetic and data transfer
instructions which support them. It examines the development of ARM
floating point support, when such operations were performed entirely in
software, and the subsequent development of the FPAlO floating point
coprocessor device which has recently become available.

Each of the ARM floating point instructions is considered and the
floating point Status Register (FPSR) is described in detail. Floating point
exceptions are discussed at the end of the chapter.

Support for floating point arithmetic in the
ARM architecture

The ARM CPUs produced to date are not themselves capable of executing
floating point instructions; instead the ARM2, ARM3 and ARM600 CPUs
all support the idea of 'coprocessors', optional devices which attach to the

181

182 The ARM floating point instruction set

9.3

CPU and accelerate floating point operations.
Where a coprocessor is not present, the ARM's 'Undefined instruc­

tion' trap allows a software program (the 'floating point emulator' or
FPE) to simulate the behaviour of the real coprocessor when floating
point instructions are encountered during execution. Clearly this results
in reduced performance compared to the 'real' coprocessor hardware, but
it also results in significantly reduced cost: a compromise which is a foun­
dation of the ARM strategy.

During Spring 1993 the first hardware ARM floating point coproces­
sor, known as FPAlO, became available: this device implements a subset
of the ARM floating point instruction set in hardware and uses a simpli­
fied floating point emulator package to perform the other operations.

The FPAlO provides a floating point performance of between one
and 2.5 MFLOPs at a clock frequency of 25 MHz. FPAlO has an 81-bit
internal data path and register bank which allows it to perform floating
point arithmetic at IEEE Single, Double, and Extended precisions to con­
form to the ANSI/IEEE 754-1985 standard when used with the appropri­
ate floating point support software.

Whether software or hardware is used to implement the floating
point subsystem in any particular ARM-based design, the programming
model remains the same. The only important functional difference
between software and hardware implementations is their relative per­
formance.

Floating point programmer's model

The ARM floating point model comprises eight general-purpose
extended precision registers known as f0 . .f7. The registers provide a
working precision of 80 bits, sub-divided into a 64-bit mantissa, a 15-bit
exponent and a sign bit.

A floating point status register, FPSR, maintains flags indicating the
state of the floating point subsystem. The FPSR contains flags and mask
bits for exceptions, a version number, and other control bits. The FPSR
can be used to distinguish between different floating point implementa­
tions and to enable or disable particular features.

A further register, the floating point control register (FPCR), is
present in the FPAlO. This register should only be accessed by the floating
point emulator support software and not by user programs.

9.4

IEEE arithmetic fundamentals 183

IEEE arithmetic fundamentals

All floating point operations conforming to the IEEE standard operate as
though they were computed to infinite precision and then rounded in one
of several ways indicated by the instruction. The following 'rounding
modes' are supported:

• Round to nearest (default)
• Round towards +oo (P)
• Round towards -oo (M)
• Round towards zero (Z)

In the ARM floating point implementation all computation is per­
formed on the eight general-purpose registers and a limited set of instruc­
tions is available for loading and storing values in those registers. It is
important to note that the registers are all directly addressable by all
instructions, as opposed to the stack-like implementations used by Intel,
for example.

Floating point values may be stored in ARM memory in one of the
five formats shown in Table 9.1.

Table 9.1 Floating point formats

Name
Storage size

Suffix
(bits)

IEEE Single Precision 32 (S)

IEEE Double Precision 64 (D)

IEEE Extended Precision 96 (E)

Packed Decimal 96 (P)

Expanded Packed Decimal 128 (EP)

The formats are selected by appending the suffix shown to an
instruction mnemonic in front of the rounding mode (see above). The last
two formats are mutually exclusive. A control flag in the FPSR is used to
determine which sort of BCD format is in use. Figures 9.2-9.6 show the
way each format is implemented

184 The ARM floating point instruction set

31 30 23 22 0

I sign I Exponent Fraction

Figure 9.2 IEEE single precision (S)

31 30 20 19 0

1st word sign Exponent msb Fraction (ms part) lsb

Fraction (Is part)

Figure 9.3 IEEE double precision (D)

31 30 15 14 0

1st word I s_ig_n ... l __ z_e_r_o_s ____ ___ ~ ___ 1_s_-b_i_t e_x_p_o_n_e_n_t ____ is~b 1

2nd word I J I msb Fraction (ms part) lsb I
3rd word I m_s_b _________ F_ra_c_t_io_n_(_1s_p_a_r_tl __________ 1s~b I

Figure 9.4 Extended precision

31 0

1st word I sign e3 e2 e1 eO d18 d17 d16 I
2nd word I d15 d14 d13 d1 2 d11 d10 d9 d8 I
3rd word I d7 d6 d5 d4 d3 d2 d1 dO I

Figure 9.5 Packed decimal (P)

9.4.1

IEEE arithmetic fundamentals 185

31 0

1st word I sign e6 e5 e4 e3 e2 e1 eO

2nd word I
d23 d22 d21 d20 d19 d18 d17 d16

3rd word I d15 d14 d13 d12 d11 d10 d9 d8

d7 d6 d5 d4 d3 d2 d1 dO

Figure 9.6 Expanded packed decimal (EP)

The ARM floating point model includes instructions to perform a
variety of standard arithmetic operations on values stored in the floating
point registers with a specified rounding mode and degree of precision.
Some implementations may also provide high-speed arithmetic opera­
tions at lower than normal precision, but this is not mandatory and
should not be assumed.

Floating point data operations

The data operations which form the core of the ARM floating point arith­
metic standard are sub-divided into two groups: those which take a sin­
gle operand, known as 'monadic' operations, and those which take two
operands, known as 'dyadic' operations. In all cases the operands are
either floating point registers or immediate constants.

The monadic operations supported by the ARM floating point sys­
tem are summarized in the Table 9.2. The remainder of this section
describes each of the instructions in turn.

Floating point data operation syntax

Monadic operations take only one floating point argument and returning
a floating point result; they are expressed in Assembly language as fol­
lows:

MonadicOpCode{cond}precision{round} Fd , Fm I # value

where:

• MonadicOpCode isoneofMVF,MNF, ABS, RND, SQT, LOG, LGN,
EXP, SIN, COS, TAN, ASN, ACS, ATN, URD or NRM

• { cond} is an optional integer CPU condition code
• preci sion specifies the destination precision and must be one of

186 The ARM floating point instruction set

'S', 'D' or 'E' for Single (32-bit), Double (64-bit) or Extended (80-bit)
• {round} optionally specifies the rounding mode, which defaults to

'Round to nearest' but may be specified as P, M or Z for Round
towards Plus infinity, Round towards Minus infinity or Round
towards Zero.

• Fd is the destination register, which may be any valid floating point
register.

Fm I #value indicates that the argument may be either a valid floating
point register or an immediate value represented by a hash(#) followed
by a small constant from the following list: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5,
10.0.

Table 9.2 Monadic operations

Mnemonic Name Operation performed

MVF Move Fd :=Fm

MNF Move negated Fd :=-Fm

ABS Absolute value Fd := ABS(Fm)

RND Round to integer Fd := integer value of Fm

SQT Square root Fd := square root of Fm

LOG Logarithm to base 10 Fd := log1o of Fm

LGN Logarithm to base e Fd := loge of Fm

EXP Exponent Fd := eFm

SIN Sine Fd := sine of Fm

cos Cosine Fd := cosine of Fm

TAN Tangent Fd :=tangentofFm

ASN ArcSine Fd := arcsine of Fm

ACS ArcCosine Fd := arccosine of Fm

ATN ArcTangent Fd := arctangent of Fm

URD Unnormalized round Fd := integer value of Fm, unnormal-
ized

NRM Normalize Fd := normalized Fm (for results of
URDonly)

IEEE arithmetic fundamentals 187

Behaviour of data operations

All data operation instructions, whether monadic or dyadic, accept oper­
ands at any precision. If executed they largely perform the relevant opera­
tion at full working precision (81 bits) and then return the result at a
specified precision, optionally rounded using one of four 'rounding
modes'. A precision for the result must always be specified, but the default
rounding mode 'Round to nearest' is likely to need to be overridden only
very infrequently.We now look at each instruction in turn.

MVF Move

MNF Move negated

The Move Floating and Move Negated Floating instructions are similar to
their counterparts in the integer instruction set. Values may be moved
from register to register, or constants loaded into registers, with a change
of sign at the same time when MNF is used.

Here are some examples:

MVFS fO, fl fO . - fl

MNFS f3 ' f7 f3 . - -f7

MVFD fl , # 4 . 0; fl . - 4 . 0

MNFE f2 , # 1. O; f2 . - -1. 0

It is important to appreciate that the small constant option is not the
only way to load constants into registers; these constants are specially
optimized for quick loading. Other constants can be initialized by the
Assembler into memory and then loaded using the floating point mem­
ory to register instructions discussed below.

ABS Absolute value

RND Round to integer

Absolute value and Round to integer both perform simple operations on
the operand:

• ABS makes the sign of the result positive irrespective of the sign of
the operand.

• RND rounds to an integer using the specified rounding mode, but
returns the result as a floating point number.

For example:

ABSS f2 , #5 . 0 f2 . - 5 . 0

RNDD f7 , #0 . 5 f7 . - 0 . 0

188 The ARM floating point instruction set

The default rounding mode (round to nearest) leads to the impor­
tant distinction shown below:

RNDE fO , fl fO .- nearest integer to fl

RNDEZ fO , fl fO .- ' integer part' of fl

The distinction between the nearest integer and the integer part is
frequently significant, but only the former is yielded in the default case.

The combinations RNDEM and RNDEP give what are sometimes
known as the 'floor' and 'ceiling' of the second operand.

RND should not to be confused with FIX (see below) which turns a
floating point value into a 32-bit integer value.

SQT Square root Fd . - square root of Fm

LOG Logarithm to base 10 Fd . - log10 of Fm

LGN Logarithm to base e Fd . - loge of Fm

EXP Exponent Fd . - eFm

SIN Sine Fd . - sine of Fm

cos Cosine Fd . - cosine of Fm

TAN Tangent Fd . - tangent of Fm

ASN Arc Sine Fd . - arcsine of Fm

ACS ArcCosine Fd . - arccosine of Fm

ATN ArcTangent Fd .- arctangent of Fm

These are the standard monadic mathematical functions. They accept
arguments of any size and attempt range reduction on those which are
inappropriate. Here are some examples of these instructions:

SQTE f4 , #4 . 0 f4 . - 2 . 0

LOGS f6, #10 . 0 f6 . - 1.0

LGNS fl , #5 . 0 fl . - LGN(5 . 0)

1. 6094379 . ..

EXPD f2, #2 . 0 f2 . - e2 = 7. 3890561 ...

MVFS fO , # 0.0
SINS fl , fO fl . - 0 . 0
COSS f2 , fO f2 . - 1. 0
ACSS f3' f2 f3 . - 0 . 0

URD Unnormalized round

NRM Normal i ze

IEEE arithmetic fundamentals 189

Fd := i nteger value of
Fm , unnormali zed

Fd := normal ized Fm (for
r esults of URD only)

The Unnormalized Round (URD) and Normalize (NRM) instructions
together have the same effect as Round (RND); however, implementation
issues mean that this operation may be more efficiently performed by
breaking it down into two stages. NRM will only produce a meaningful
result when supplied with the result of an URD as its argument, and the
result of an URD should only be processed by an NRM.

Dyadic floating point data operations

The dyadic operations again include a typical set of common mathemati­
cal functions. Some operations mirror their integer counterparts in famil­
iar ways: for example, with 'reverse' instruction forms

Table 9.3 Dyadic operations

Mnemonic Name Operation performed

ADF Add Fd := Fn +Fm

MUF Multiply Fd := Fn * Fm

SUF Subtract Fd :=Fn-Fm

RSF Reverse subtract Fd :=Fm-Fn

DVF Divide Fd := Fn I Fm

RDF Reverse divide Fd :=Fm I Fn

POW Power Fd := FnFm

RPW Reverse power Fd := FmFn

RMF Remainder Fd := IEEE remainder of Fn I Fm

FML 'Fast' multiply Fd := Fn * Fm (single precision)

FDV 'Fast' divide Fd := Fn I Fm (single precision)

FRD 'Fast' reverse divide Fd := Fm I Fn (single precision)

POL Polar angle Fd := ArcTan(Fn/ Fm), but see text

Dyadic operations accept two floating point arguments and return a float­
ing point result; they are written in Assembly language as follows:

190 The ARM floating point instruction set

DyadicOpCode{cond}precision{round} Fd , Fn , Fm I #value

where:

• Dyadi cOpCode is one of ADP, MUF, SUP, RSF, DVF, RDF, POW,
RPW, RMF, FML, FDV, FRD or POL

• { cond) is an optional integer CPU condition code
• precision specifies the destination precision and must be one of S,

Dor E for Single (32-bit), Double (64-bit) or Extended (80-bit)
• {round) optionally specifies the rounding mode which defaults to

Round to nearest but may be specified as P, M or Z for Round
towards Plus infinity, Round towards Minus infinity or Round
towards Zero.

• Fd, and Fn are any valid floating point register; Fd is the destina­
tion, Fn an operand.

• <Fm I #value> indicates that the argument may be either a valid
floating point register or an immediate value represented by a hash
(#) followed by a small constant from the following list: 0.0, 1.0, 2.0,
3.0, 4.0, 5.0, 0.5, 10.0.

The instructions for addition, subtraction, multiplication, division,
remainder and power scarcely need any introduction.

The 'reverse' forms of the subtract, divide and power operations
exist to allow small constants which are available in place of register Fm
to be subtracted from, divided into or raised to a power; this is discussed
in more detail below.

The 'fast' forms of multiply, divide and reverse divide are only
defined to operate on single-precision arguments; these instructions may
or may not execute more quickly on any particular implementation. The
FPAlO, for example, implements fast multiply (FML) in fewer cycles than
Multiply Floating (MUF) but Fast Divide (FDV) and Fast Reverse Divide
(FRD) take the same amount of time as Divide Floating (DVF) and
Reverse Divide Floating (RDF).

The Polar Angle (POL) instruction computes the Fortran library
function ArcTan2, which is the polar angle from the positive x-axis to the
line joining the origin to (Fn, Fm).

Here are some examples using the monadic and dyadic floating
point instructions introduced so far:

• Addition

MVFS fl, # 2.0;

ADFS f2, fl, #1.0 ; f2 . - 3.0

• Multiplication

9.4.2

IEEE arithmetic fundamentals 191

MVFD f5 , # 10 . 0

MUFD f 5 , f 5 , f 5 ; f 5 . - 10 0 . 0

• Addition and logarithms

LOGS f6 , #2 . 0 ; f6 . - logl0(2 . 0)

LOGS f7 , #5 . 0 ; f7 . - logl0(5 . 0)

ADFS f5 , f6 , f7 ; f5 : = 1.0 = logl0(10)

• Divide and Reverse divide

MVFD fO , # 2 . 0 ;

DVFD f2 , fO , #3 . 0 ; f2 . - 0 . 66666666 ...

RDFD f3 , fO , #3 . 0 ; f3 . - 1.5

• Remainder

MVFS f4 , # 5 . 0 ;

MUFS f4 , f4 , f4 ; f4 . - 25 . 0

RMFS f5 , f4 , # 4 . 0 ; f5 . - 1 . 0

• Polar angle

MNFD fO , #1.0 ; fO . - - 1

MVFD fl , #1.0 ; fo . - +l

POLD f2 , fO , fl ; f2 : = 3n i/4 2 . 35619

Floating point single data transfer instructions

The floating point register transfer instructions exist in single- and multi­
ple-register forms, just like the ARM's integer LDR/LDM and STR/STM
instructions. The single-register transfer instructions provide the 'Load
floating' and 'Store floating' operations, which allow values to be moved
between memory and the coprocessor registers. These instructions are all
aliases for 'coprocessor data transfer' instructions and are translated
automatically during assembly into LDC/STC instructions.

The instructions in this group are:

192 The ARM floating point instruction set

9.4.3

LDF{cond}format Fd , addressing_ mode

STF{cond}format Fd , addressing_ mode

where:

• { cond} is an optional integer CPU condition code
• format indicates the memory format and must be one of S, D, E or

P for Single precision (one 32-bit word), Double precision (two
words), Extended precision (three words) or Packed decimal (either
three or four words according to the configuration of the EP flag in
the FPSR).

• Fd is the destination and may be any valid floating point register.
• addressing_ mode determines the source of the address and must

be one of the entries in Table 9.4.

Table 9.4 Addressing modes

Style

[Rn]

[Rn, #expression]{!}

[Rn], #expression

Type

Pre-indexed

Pre-indexed

Post-indexed

Offset

Zero

± expression

± expression

where the expression is divisible by four and in the range ±1020.
Post-indexed addressing is always assembled with write-back of the

base register without an explicit'!' being required; R15 (PC) must not be
used as the base register when post-indexed addressing is used.

Rounding and precision

When a value is stored to memory using STF the value is 'rounded to
nearest' to the specified destination precision or is already precise if the
destination has sufficient precision. If another rounding mode is required
it may be applied with an earlier data operation (including MVFx fp_reg,
fp_reg); no additional rounding error is then introduced by this instruc­
tion, so the IEEE requirement of rounding only once is not compromised.

Floating point multiple data transfer instructions

The load/ store multiple register instructions allow between one and four
floating point registers to be transferred from / to memory with a single
instruction. These operations are valuable when context-switching

IEEE arithmetic fundamentals 193

obliges many registers to be saved. The limitation on the number of regis­
ters which may be transferred is imposed to keep the maximum execu­
tion time of the instruction at a par with the longest integer instruction, an
integer load/ store multiple.

The value is transferred as three words of data per register; the data
format is not defined and may change, so the only valid operation is to
transfer the data back using the opposite instruction from the same
implementation. The data stored in memory must not be used or altered
by any user process.

The syntax of these instructions in assembly language takes one of
two forms: the first resembles the single-register data transfer instruc­
tions, and the second resembles the integer multiple-register instructions
and is suitable for stack operations.

Memory address form

LDF{cond} Fd , count , addressing_ mode

STF{cond} Fd , count , addressing_ mode

where:

• { cond) is an optional integer CPU condition code.
• count is the number of registers to transfer. Registers are always

transferred in ascending order and wrap around at register f7.
• Fd is the destination and may be any valid floating point register.
• addressing_ mode determines the source of the address and must

be one of the entries in Table 9.5.

Table 9.5 Addressing modes

Style

[Rn]

[Rn, #expression]{ !)

[Rn L #expression

Type

Pre-indexed

Pre-indexed

Post-indexed

Offset

Zero

±expression

±expression

where the expression is divisible by four and in the range ±1020 to.
Post-indexed addressing is always assembled with write-back of the

base register without an explicit ' !' being required; RlS (PC) must not be
used as the base register when post-indexed addressing or explicit write­
back with pre-indexed addressing is used.

194 The ARM floating point instruction set

9.4.4

Stack operation form

LFM{cond}<FD[EA> Fd , count , [Rn] { ! }

SFM{cond}< FDI EA> Fd , coun t, [Rn]{ ! }

With this syntax a two-letter suffix of the same style as that for integer
instructions must be appended to indicate the type of stack in use; the
options are summarized in Table 9.6.

Table 9.6 Stack operation options

Name

Post-increment load

Pre-decrement load

Post-increment store

Pre-decrement store

Syntax

LFMFD

LFMEA

SFMEA

SFMFD

• count is the number of registers to transfer. Registers are always
transferred in ascending order and wrap around at register f7.

• { ! } optionally specifies write-back of the base register Rn. If Rn is
RlS (PC) write back must not be specified.

Floating point register transfer instructions

This group of instructions allows registers to be transferred between the
CPU and the coprocessor; both the conversion between floating point and
integer formats and access to the coprocessor's FPSR and FPCR are sup­
ported by this group:

FLT{cond}precision{round} Fn , Rd

FIX{cond}{round} Rd , Fm

• I cond) is an optional integer CPU condition code
• precisi on specifies the destination precision and must be one of S,

Dor E for Single (32-bit), Double (64-bit) or Extended (80-bit)
• I round) optionally specifies the rounding mode which defaults to

Round to nearest but may be specified as P, M or Z for Round
towards Plus infinity, Round towards Minus infinity or Round
towards Zero.

• Fn and Fm are any valid floating point register.
• Rd is any valid integer register except rlS (PC).

9.4.5

IEEE arithmetic fundamentals 195

It is not legitimate to use constants in place of Fm with the FIX instruction;
in any case a MOV instruction loads integer constants much more effi­
ciently.

Floating point compare instructions

The compare instructions allow floating point numbers to be compared
either directly or with the second operand negated. Furthermore, they
may be compared either with or without exception handling if the oper­
ands are 'unordered', that is they are 'Not A Number' (NaN) in the IEEE
specification.

The syntax of this group of instructions is as follows:

CMF{cond} Fn , Fm

CNF{cond} Fn , Fm

CMFE{cond} Fn , Fm

CNFE{cond} Fn , Fm

Fn and Fm are the two operands and may be any valid floating point reg­
ister (there is no direct result).

The forms with the suffix E enable exception handling.

Results of comparison instructions

The ARM flags N, Z, C, V are set after the comparison, according to the
state of the AC bit in the FPSR, as shown in Tables 9.7 and 9.8.

Table 9.7 AC clear

Flag

N

z

c

v

Meaning

Less than, that is Fn less than Fm or -Fm

Equal

Greater than or equal, that is Fn greater than or equal to Fm or
-Fm

Unordered

When testing IEEE predicates the CMF instruction should be used
to test for equality (that is when a BEQ or BNE will follow it) or to test for
unorderedness. The CMFE instruction should be used for all other tests
(that is those followed by BGT, BGE, BLT or BLE). The exception handling

196 The ARM floating point instruction set

9.4.6

Table 9.8 AC set

Flag

N

z

c
v

Meaning

Less than

Equal

Greater than or equal or unordered

Unordered

variants CMFE/CNFE produce an exception if the operands are unor­
dered, that is at least one operand is a NaN; the non-exception handling
variants only produce an exception when at least one operand is a signal­
ling NaN.

Support for exceptions is dependent on the host language and oper­
ating system: exceptions are signalled through the 'Undefined instruc­
tion' trap and dealt with by the floating point support software. Chapter 5
discusses exceptions in more detail.

A floating point programming example

In order to demonstrate the floating point instructions in action the fol­
lowing example program has been included. It calculates and displays
Mandlebrot functions and has been compiled from C. The program
assumes direct access to a 640 by 480 display which stores an 8-bit pixel
per byte, that is XGA style in PC terminology.

It is interesting to note the particular similarity between the C and
Assembler versions of the innermost loop, shown highlighted in bold
below. Note also that the C compiler uses the symbols 'al..a4', 'vl..v4'
and others as aliases for registers; this is achieved by means of the RN
directive in a header file which is not shown here.

IEEE arithmetic fundamentals 197

/ * FPA Mandelbrot * /

#include <stdio . h>

#define ZOOM 256
#define TOX - 1.252
#define TOY +0 . 342
#define SIZE 0 . 01
#define SIZESTEP 0 . 8
#define BIGNO 1E8

int main(int argc , char *argv[J)

if(argc == 3
{

else

bigno = BIGNO ;

while(1)

/ * expect 640 x 480 x 8 XGA-style * /
unsigned char *screen ;
double x , y , a , b ;
double tox , toy ;

double size ;
double x2 , y2 , xy , twoxy , x2addy2 ,

x 2suby2 , bigno ;
int count ;
int col , row ;
int zoom ;

sscanf(argv[l], " %f ", &tox) ;
sscanf(argv[2], " %f ", &toy) ;

tox TOX ;
toy TOY ;

size = SIZE ;
for(zoom = ZOOM ; - -zoom >= O;)
{

screen = (unsigned char *) ((32 *1024 -
320) *1024) ;

b = toy - (double) (240 *size) ;

for(col = 480 ; --col >= O;)
(

b = b + size ;

198 The ARM floating point instruction set

a = tox - (double) (320 *size) ;

for(row = 640 ; -- row >= O;)

a = a + size ;

count 128 ;

x = a ;

y = b ;
do

x2 = x * x;
y2 = y * y ;
xy=x * y ;

x2suby2 = x2 - y2 ;

twoxy = xy + xy ;

x = x2suby2 + a ;

x2addy2 = x2 + y2 ;

y = twoxy + b ;
}

while(x2addy2 < bigno && - - count ! = 0) ;

* (screen++) = (unsigned char)count ;

size size * SIZESTEP ;

/ * while * /

return O;

This is the Assembler output produced by the above program:

IEEE arithmetic fundamentals 199

; generated by Norcroft ARM C vsn 4 . 41 (Advanced RISC Machines)

[Jan 12 1993]
AREA IC$$codel , CODE , READONLY

lx$codesegl

DCB &6d , &61 , &69,&6e

DCB &00 , &00 , &00 , &00

DCD &ff000008

IMPORT l ~rt_stkovf_split_smalll

IMPORT sscanf

EXPORT main

main
MOV ip , sp

STMDB sp !, {al , a2 , vl - v4 , fp , ip , lr , pc}

SUB fp , ip , #4

STFE f7 , [sp , #-&c] !

STFE f6 , [sp , #-&c] !

STFE f5, [sp , # - &c] !

STFE f4 , [sp , # - &c] !

CMP sp , sl

BLLT l ~rt_stkovf_split_smalll

MOV vl,a2

SUB sp , sp , #&30

CMP al,#3

BNE IL000068 . J4 . mainl

LDR al, [vl , #4]

ADD a3 , sp , #8

ADD a2 , pc , #L000064 -.- 8

BL sscanf

LDR al,[vl,#8]!

MOV a3 , sp

ADD a2 , pc , #L000064 -.- 8

BL sscanf

B IL000078 . J6 . mainl

L000064

DCB &25 , &66 , &00 , &00

IL000068 . J4 . mainl

LDFD fO , [pc , #L0000b8- . - 8]

STFD fO , [sp , #8]

LDFD fO , [pc , #LOOOOcO- . -8]

STFD fO, [sp , #OJ

IL000078 . J6 . mainl
LDFD f7 , [pc , #L0000c8- . -8]

LDFD fO, [pc, #LOOOOd0 -. - 8]

STFD fO , [sp , #&28]

MOV v4 , #&100

MOV v3 , #&fb0000

ADD v3 , v3 , #&1000000

200 The ARM floating point instruction set

LDFD fO , [pc , #L0000d8- . -8]
STFD fO , [sp , #&20]
MOV v2 , #&le0
MOV vl , #&280
MOV l r , #&80
LDFD fO , [pc , #LOOOOeO -. - 8]
STFD fO , [sp , #&18]

IL0000ac . J7 . main l
LDFD fO , [sp , #&28]
MOV a2 , v4
B IL00018c . Jl0 . mainl

L0000b8
DCD &bff40831 , &26e978d5

LOOOOcO
DCD &3fd5e353 , &f7ced917

L0000c8
DCFD le8

LOOOOdO
DCFD 0 . 01

L0000d8
DCFD 240 . 0

LOOOOeO
DCFD 0 . 8

IL0000e8 . J9 . main l
MOV ip , v3
LDFD fl , [sp , #&20]
MUFD f2 , fO , fl
LDFD fl , [sp , #OJ
SUFD fl, fl , f2
MOV a4 , v2
LDFD f2 , [pc, #LOOOll0 -.- 8]
MUFD f2 , f0 , f2
STFD f2 , [sp , #&10]
B IL00017c . Jl2 . mainl

L000110
DCFD 320 . 0

IL000 118 . Jll . main l
ADFD fl , fl , fO
LDFD f3 , [sp , #&10]
LDFD f2 , [sp , #8]
SUFD f2 ' f2 ' f3
MOV a3 , vl
B IL000174 . Jl4 . main l

IL000130.Jl3 . mainl
ADFD f2 , f2 , f0
MOV a l ,lr
MVFD f4 , f2
MVFD f3 ' fl

IL000140 . Jl5 . mainl

9.4.7

MUFD
MUFD
MUFD
SUFD
ADFD
ADFD
ADFD
ADFD
CMFE
BGE
SUBS
BNE

IL000170 . J16 . rnainl
STRB

IL000174 .Jl4 . rnainl
SUBS
BPL

IL00017c .Jl2 . rnainl
SUBS
BPL
LDFD
MUFD

IL00018c .Jl0 . rnainl
SUBS
BMI
B

AREA
lx$datasegl

END

IEEE arithmetic fundamentals 201

f6,f4,f4
f5 , f3,f3
f3 , f4 , f3
f4 , f6 , f5
f3 , f3 , f3
f4 ,f4 , f2
f5 , f6,f5
f3,f3 , fl
fS, f7

IL000170 . Jl6 .rnainl
al , al ,# 1
IL000140 .Jl5.rnainl

al,[ip] , #1

a3,a3 , #1
IL000130 . Jl3 . rnainl

a4 , a4 , #1
IL000118.Jll .rnain l
fl , [sp , #&18]
fO,fO , fl

a2 , a2 , #1
IL0000ac . J7.rnainl
IL0000e8 . J9 . rnainl

IC$$datal , DATA

Floating point status and control (FPSR/FPCR) register
transfers

WFS{cond} Rd

RFS{cond} Rd

These two instructions allow the floating point Status Register (FPSR) to
be read and written. Rd is any valid integer register except r15 (PC). The
FPSR may be used by applications programs to control the internal for­
mats used for calculations and to configure the handling of floating point
exceptions. The format of this register is discussed below.

202 The ARM floating point instruction set

9.4.8

WFC{cond} Rd

RFC{cond} Rd

These two instructions were not supported by ARM floating point sys­
tems prior to the FPAlO. They are intended for use solely by floating point
support software and should not be issued in user programs. They are
included here only for the sake of completeness.

The floating point Status Register (FPSR)

The floating point Status Register (FPSR) is present in all implementa­
tions of the ARM floating point standard and contains status and control
bits which allow user programs to determine the precise behaviour of the
available floating point system.

The FPSR is a 32-bit word treated as four separate byte fields; a sys­
tem ID byte, an exception trap enable byte, a system control byte and a
cumulative exception flags byte. Note that the FPSR is not cleared on a
system reset: it is usually initialized by the floating point support soft­
ware.

FPSR System ID byte: FPSR[31 .. 24]

The System ID byte, bits 31..24 of the FPSR, allows programs to distin­
guish between different versions of the floating point system. The values
in Table 9.9 were defined at the time of writing.

31 24

Sys Id

Figure 9.7 System ID byte

Table 9.9 System ID byte values

Value (Hex)

00

01

80

81

Implementation

Floating point emulator software, pre FPAlO

Floating point emulator software, post FPAlO

Floating point coprocessor, pre FPAlO

FPAlO coprocessor

IEEE arithmetic fundamentals 203

Note that FPSR[31] is set for hardware (that is 'fast') implementations and
clear for software (that is 'slow') implementations. This byte of the FPSR
is read-only, writes to it are ignored.

FPSR Exception trap enable byte: FPSR[23 .. 16]

The Exception trap enable byte, bits 23 . .16 of the FPSR, contains a bit field
each bit of which enables exception traps of a certain kind or is reserved.
Figure 9.8 summarizes the meaning of each of the bits:

23 22 21 20 19 18 17 16

Figure 9.8 Exception trap enable byte

If an exception trap enable bit is clear when the relevant exception occurs
a flag in the cumulative Exception flags byte will be set (see below); if the
trap enable bit is set an exception trap will occur instead.

Reserved bits should be preserved unaltered by using a read-mod­
ify-write strategy in user programs.

FPSR System Control byte: FPSR[15 .. 8]

The System Control byte, bits 15 .. 8 of the FPSR, determine which features
of the floating point system are in use. They may be read and written by
user programs to allow their preservation during context switches. Figure
9.9 summarizes the meaning of each of the bits:

15 14 13 12 11 10 9 8

I Reserved I AC' EP I SO I NE I ND'

Figure 9.9 System control byte

• AC : Alternative Carry flag interpretation
When AC is set the ARM Carry flag C is set if the result of a floating
point comparison operation is Greater than or equal to or
Unordered. This is a new feature of the FPAlO which allows more of
the IEEE predicates to be tested for using simple ARM conditional
instructions.
When AC is clear the ARM Carry flag C is set if the result of a
floating point comparison is Greater than or equal to. This is the
original definition.

• EP : Expanded packed BCD format
When EP is set the expanded (four-word) format for Packed decimal

204 The ARM floating point instruction set

(BCD) numbers is used. This allows conversions from Extended
precision to Packed decimal values to be performed without loss of
accuracy.
When EP is clear the standard (three-word) format for Packed
decimal numbers is used.

• SO : Select synchronous operation of FPA
When SO is set all floating point instructions execute synchronously
and the integer CPU will busy-wait until each floating point
instruction has completed. This allows exceptions to be reported
precisely at the expense of some loss of performance.
When SO is clear then the FPA executes asynchronously any
instruction which can proceed without the integer CPU, leading to
the possibility of exceptions being reported imprecisely.

• NE : NaN exception control
When NE is set all conversions between single, double and
extended precision will produce an invalid operation exception (see
below) if the operand is a signalling NaN.
When NE is clear Extended format is regarded as an internal format
as far as conversions of signalling NaNs are concerned: only
conversions between single and double precision will produce an
invalid operation exception (see below) if the operand is a signalling
NaN.

• ND : No denormalized numbers
When ND is set the floating point support software will force all
denormalized numbers to zero to reduce lengthy execution times
when dealing with denormalized numbers. This mode is not IEEE
754 compliant but may be desirable in some programs for
performance reasons.
When ND is clear denormalized numbers are treated in an IEEE 754
compliant way.

Exceptions flags byte FPSR [7 .. 0]

6 5 4 3 2 0

Reserved I ixc I UFCI OFCI ozcl 1oc I

Figure 9.10 Exception flags byte

Whenever a floating point exception occurs and the corresponding trap
enable bit is clear the appropriate exception flag bit shown above will be
set. If the corresponding trap enable bit is set then an exception is raised to
the user program in an implementation-specific manner. Floating point
exceptions are discussed in the next section.

9.4.9

IEEE arithmetic fundamentals 205

Possible causes of floating point exceptions

Unlike other types of exception, such as the interrupts or memory aborts
described in Chapter 5, floating point exceptions do not have hardware
vectors. Instead, they all start life as an 'Undefined instruction' exception
which is trapped by the system's floating point support software or emu­
lator. If it is determined that a floating point exception has occurred and
the corresponding trap bit is enabled then the exception is passed on to
the operating system

The Exception trap enable byte of the FPSR contains bits which
determine the fate of floating point faults: if the relevant bit is clear then
the relevant cumulative exception flag bit is set(also in the FPSR), other­
wise an exception is raised.

Types of floating point exception

There are five kinds of floating point exception, shown in Table 9.10.

Table 9.1 O Floating point exceptions

Code Exception

IO Invalid operation

DZ Division by zero

OF Overflow

UF Underflow

IX Inexact

The circumstances which may lead to each of these exceptions are
described below.

Invalid operation exception

This exception arises when an operand is invalid for the operation to be
performed. When exception trapping is disabled the result of the opera­
tion is a 'quiet NaN'. Invalid operations include:

• Any operation on a signalling NaN except LDF, LFM, SFM, or any
of MVF, MNF, ABS or STF without a change of precision.

• Magnitude subtraction of infinities. Multiplication of zero by an
infinity.

• Division of zero by zero or oo by oo.

• x REM y where x is oo or y is zero.

206 The ARM floating point instruction set

• Square root of any number less than zero (but SQT(-0) is -0).
• Conversion to an integer when overflow, infinity or NaN make it

impossible. If overflow makes a conversion to integer impossible
the largest positive or negative integer is returned (depending on
the sign of the operand) and an Invalid Operation is signalled.

• CMFE, CNFE when at least one operand is a NaN.
• ACS, ASN when input absolute value is > 1.
• SIN, COS, TAN when input is infinite or too large for accurate

computation of the function.
• LOG, LGN when input is <0.
• POW when first operand is <0, or first is zero and second is ::;o. On

some systems these invalid operations don't occur if the second
operand is an integer.

• RPW when second operand is <0, or second is zero and first is ::;o.
On some systems these invalid operations do not occur if the second
operand is an integer.

Division by zero exception

The division by zero exception occurs if the divisor is zero and the divi­
dend a finite, non-zero number. A correctly signed infinity is returned if
the exception trap is disabled. This exception is also raised for LOG(O)
and LGN(O), where - oo is returned, and on some systems for POW with
the first operand zero and the second negative or RPW with the second
operand zero and the first operand negative.

Overflow exception

The overflow exception occurs when the destination format's largest pos­
sible value is exceeded by what would have been the result. A correctly
signed infinity or that format's largest possible finite number is returned,
depending on the rounding mode.

Underflow exception

Two related events contribute to underflow exceptions:

• Tininess: the creation of a non-zero result smaller than the format's
smallest normalized number

• Loss of accuracy: a loss of accuracy due to denormalization that
might be greater than would be caused by rounding alone.

If the underflow exception trap enable bit is set then an underflow
exception occurs when tininess is detected, regardless of loss of accuracy.
If the trap is disabled then both tininess and loss of accuracy must be
detected for the underflow flag to be set (and inexactness will also be sig­
nalled).

9.5

Summary 207

Inexact exception

The inexact exception occurs if the rounded result of an operation is not
exact, that is either different from the value computable with infinite pre­
cision, or overflow has occured while the overflow trap was disabled or
underflow has occurred while the underflow trap was disabled. Overflow
and underflow traps take precedence over inexact. Note that except for
special cases, such as SIN(O) and COS(O), all transcendental operations
are inexact.

Summary

The ARM floating point system provides a flexible implementation of an
IEEE-compliant floating point system which supports arithmetic at Sin­
gle, Double and Extended precision. The floating point environment can
be available to systems both with and without an FPAlO or other hard­
ware coprocessor.

The floating point instruction set includes most traditional monadic
and dyadic arithmetic, and transcendental functions. The dense code
which results from using this instruction set is particularly efficiently exe­
cuted by FPAlO, yielding floating point performance in the 1-2 MFLOP
region when executed on that device.

Floating point exceptions are handled by the floating point support
software and upgraded to fatal system errors or high-level language 'sig­
nals' as appropriate.

Appendix A

Instruction set mnemonic
summary and reference

209

210 Appendix A

ADC
Arithmetic add with carry Rd := Rn + Op2 + Carry

Syn tax : ADC{c ondi t ion} {S } Rd, Rn , Op2

Flags affected:

Timing:

N,Z,C,V

lS
+ 1 S for shift (Rs)
+1S+1 N if R15 written

If the condition is true ADC adds two 32-bit 2's complement operands. A value of
+ 1 is added to the sum if the Carry was set prior to execution; nothing is added to
the sum if the Carry was clear. The flags are set only if the S option is used.

ADC is often used as a step in computing the sums of numbers larger than
32 bits.

For example, to perform a 64-bit signed addition of RO,Rl with R2,R3 giving
a result in RO,Rl the following sequence might be employed:

ADDS R0 , RO , R2 ; Add lower words & produc e carry
ADC Rl , Rl , R3 ; Add upper words and carry

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a
shift count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed expres­
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an SBC instruction with· the l's complement
of the constant instead. If this second attempt also fails it produces an error.

The overflow V flag is set if the two operands have the same sign and the
result has a different sign.

Appendix A 211

ADD
Arithmetic Add Rd:= Rn+ Op2

Syntax : ADD{condition}{S} Rd , Rn , Op 2

Flags affected: N,Z,C,V

Timing: lS
+ 1 S for shift (Rs)
+ 1 S + 1 N if R15 written

If the condition is true ADD performs a 32-bit addition of 2's complement oper­
ands. The flags are set only if the S option is used.

The state of the carry bit (C) before execution is ignored but will be affected
by the result (carry out from bit 31) if the S option is specified in the instruction.

Typical instructions are of the following form:

ADD
ADD

R0 , RO,R2,ASR 2 ; RO =RO + (R2/4)
R5,R4,#0x8000 ; RS = R4 + 32768

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm, RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a
shift count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed expres­
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating a SUB instruction with the l's complement of
the constant instead. If this second attempt also fails it produces an error.

The overflow V flag is set if the two operands have the same sign and the
result has a different sign.

212 Appendix A

ADR
Load address to register Rd = expression

Synta x : ADR Rd , exp res s i on

Pseudo instruction

This pseudo-instruction exists to allow large constants or addresses to be loaded
into a register using a single mnemonic. The assembler will generate the appropri­
ate instructions to load the constant; one of ADD, SUB, MOV, MVN or LDR will be
used. Note that it is an address which is produced, so the value at the address
must still be loaded using a separate instruction.

For example:

ADR

ADR

RlO, Table+20 ; refer to table

RO , Ox12345678 ; load constant

Where the effective address or constant is within a 256-byte range of the
present PC value or is relative to a register a MOV, MVN, ADD or SUB is used. If
this is not possible an effective address is generated, stored in a 'long reach' table
and an LDR used.

See also: LEA (synonym)

Appendix A 213

AND
Logical AND Rd= Rn AND Op2

Syntax : AND{condition }{S} Rd, Rn, Op2

Flags affected: N,Z,C

Timing: lS
+ 1 S for shift (Rs)
+ 1 S + 1 N if R15 written

If the condition is true the destination register receives the 32-bit result of a bitwise
logical AND of the two operands. For each bit position in the two sources the bits
are compared and if they are both set then the corresponding bit in the destination
is set. The flags are set only if the S option is used.

AND is used to mask bits out or for logical AND operations. To clear the bits
specified by a second operand use the BIC (bit clear) instruction.

No carries are involved in this operation but the Carry flag is set to the
shifter carry output.

For example:

AND

BIC

are both equivalent.

R9, R9 , #OxFFFFFFOO

R9, R9 , #Ox FF

The Op2 operand can be any of the following:

Rm , shift Rs

Rm , shift #expressionl

Rm , RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a
shift count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed expres­
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an SBC instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

214 Appendix A

B
Branch R15 (PC)= new address

Syntax : B{condition} address_ expression

Flags affected: none

Timing: 2S+ 1 N

If the condition is true the Program Counter (PC) in Rl5 is forced to a new word­
aligned address, changing the control flow before the next instruction is fetched .
The new PC value is the sum of its present value and the address expression
included in the instruction, so a PC-relative branch is caused, not an absolute
address branch. However, the assembler will allow absolute branches and calcu­
late the correct offset.

The address_expression must be evaluated to a signed 2's complement value
and placed in a 24-bit field in the instruction. This is shifted left two bits, sign
extended to 32 bits and added to the PC to perform the branch. The instruction
can therefore specify a branch of ±32 Mbyte.

The PC always contains a value eight bytes ahead of the current instruction
to allow for pre-fetching. This means that offsets for Branch instructions must be
(and are) adjusted accordingly by the assembler.

Any of the 15 valid condition code combinations may be used to determine
whether the branch takes place. Note that ALways is assumed as the default.

For example:

here BAL here assembles to &EAFFFFFE

B Ox2000000 branch ALways absolute

CMP Rl , #0 compare Rl with zero
BEQ Label branch if equal ,

to label

Computed branches and manually calculated absolute branches may be
performed by computing and loading a register and then issuing MOV PC,Rn.

Bit clear

Appendix A 215

BIC

Rd= Rn AND (1 's complement of
Op2)

Syntax : BI C{condition}{S} Rd , Rn , Op2

Flags affected:

Timing:

N, Z,C

lS
+ 1 S for shift (Rs)
+1S+1 N if RlS written

If the condition is true this instruction clears those bits in the first operand indi­
cated by set bits in the second operand. The flags are set only if the S option is
used.

For example:

BIC

BIC

Rl, Rl , 5 ; == AND Rl , Rl , 0xFFFFFFF2
RO, RO , 1 ; clear LSB of RO

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a
shift count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed expres­
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an AND instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

216 Appendix A

BL
Branch with link R14 =PC, PC= <new address>

Syntax: BL{condition } address_expression

Flags affected: none

Timing: 2S+1N

If the condition is true the Program Counter (R15) is saved in the Link Register
(R14) and the PC is forced to a new word-aligned address supplied by the instruc­
tion.

The instruction is used to perform subroutine calls from which a return may
be achieved by restoring the contents of R14 to the PC.

The new PC value is the sum of its present value and the address expression
included in the instruction, so a PC-relative branch is caused, not an absolute
address branch. However, the assembler will allow absolute branches and calcu­
late the correct offset.

address_expression is evaluated to a signed 2's complement value and
placed in a 24-bit field in the instruction. This is shifted left two bits, sign
extended to 32 bits and added to the PC to perform the branch. The instruction
can therefore specify a branch of up to ±32 Mbyte.

The PC always contains a value 8 bytes ahead of the current instruction to
allow for prefetching. This means that offsets for Branch instructions must be
(and are) adjusted accordingly by the assembler.

Any of the 15 valid condition code combinations may be used to determine
whether the branch takes place. Note that ALways is assumed as the default.

For example:

BL RoutineName He r e

and to return:

MOV PC , Rl4 aka MOV PC, LR

See also: B

Appendix A 217

CDP
Coprocessor Data Processing Coprocessor-specific

Syntax: CDP{condition} pcp_no, cp_opc, cRd, cRn, c<Rm>
{ , expression}

Flags affected: none

Timing: 1 S + b I (b= no. busy cycles)

If the condition is true a coprocessor data operation is performed. This group of
instructions initiate some coprocessor operation specific to the device being
addressed. Floating-point coprocessor operations are normally written using ded­
icated assembler instructions which are assembled into this instruction.

The parameters are: p cp_no (a coprocessor number 0 .. 15), cp_opc (an
opcode 0 .. 15), cRd/cRn/cRm (coprocessor registers) and an optional expression
giving a result 0 .. 7.

Consult the relevant coprocessor data sheet for more information.
For example:

CDPEQ pl, 6, c9, cl, cO, 7

See also Appendix Bon Floating-Point coprocessor instructions.

218 Appendix A

CMN
Compare Negative Flags = Rn + Op2

Syn tax : CMN {condition} {P } Rn , Op2

Flags affected: N,Z,C,V

Timing: lS
+ 1 S for shift (Rs)

If the condition is true compare negative sets the PSR flags according to the result
of comparing the register with a 2's complement number, the result itself being
discarded; an S suffix is optional but is always implied. This instruction returns
no result but simply sets the flags. It is the inverse of the CMP instruction, which
it is preferable to use when Op2 is a constant since the assembler will replace it
with CMN if appropriate.

In a 26-bit CPU mode the optional P suffix causes the PSR flags to be set
according to the state of bits 28 .. 31 of the result (that is PSR flag bit positions
within the result). The P form of this instruction must not be used in 32-bit CPU
modes.

For example:

CMN RO , # - 23 Same as CMP RO , 22

CMN RlO , R2 Same as CMP RlO , (NOT R2)

The Op2 operand can be any of the following:

Rm, shift Rs
Rm , shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a
shift count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed expres­
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an SBC instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

Appendix A 219

CMP
Arithmetic compare Flags = Rn - Op2

Syntax: CMP{condition}{P} Rn , Op2

Flags affected: N,Z,C,V

Timing: lS
+ 1 S for shift (Rs)

If the condition is true a register and a constant or another register are compared,
setting the PSR flags and discarding the result; the S suffix is optional and always
implied.

The optional P suffix causes the PSR flags to be set according to the, state of
bits 28 .. 31 of the result (that is PSR flag bit positions within the result). The P form
of this instruction must not be used in 32-bit CPU modes.

For example:

HexlO CMP
MOVCC
CMP
SUB LS

R2 ,.

PC ,
R2 ,

R2,

"0"
LR
" 9 "

R2 , # " 0 ";

test R2 lower bound

return if out of range

test upper bound

convert to decimal

The Op2 operand can be any of the following:

Rm , shift Rs

Rm, shift #expressionl
Rm , RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating a CMN instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

220 Appendix A

EOR
Logical exclusive OR Rd=(Rn AND NOT Op2) OR (Op2

AND NOT Rn)

Syntax : EOR{condition}{S} Rd , Rn , Op2

Flags affected: N,Z,C

Timing: lS
+ 1 S for shift (Rn)
+ 1 S + 1 N if R15 written)

If the condition is true a 32-bit logical exclusive OR is performed and the 32-bit
result stored. For each bit in the two operands the destination bit is set if the
source bits differ, otherwise it is cleared. The carry flag is set to the shifter carry
output. The flags are set only if the S option is used.

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

For example:

EOR
EOR

RS, RS , #32; Invert bit S
Rl 0 , Rl 0, R13

Appendix A 221

LDC
Load coprocessor from memory Coprocessor load

Syntax : LDC{condition}{L} pcp_ no , cRd, address { ! }

Flags affected: none

Timing: (n-1) S + 2 N + b I (n=no. of words, b=no. of busy cycles)

If the condition is true a coprocessor register is loaded from memory, specifying
the coprocessor number, its register number and an address in one of various
forms. Pre- and Post-indexing are possible and the address may be register­
relative.

For the coprocessor, pcp_ no is the coprocessor number 0 .. 15, and cRd the
coprocessor destination register. The address may take one of the following forms:

expression

[Rn)

[Rn , expression)

[[Rn), expression)

where Rn is a CPU register and expression is in the range -1020 to +1020 bytes
relative to PC and divisible by four.

For example:

LDC pl , c2, [LK , -4)

222 Appendix A

LDM
Load multiple registers Stack manipulation (pop)

Syntax : LDM{condit i on}mode Rn{ ! } , {{reg_ list}}{A}

Flags affected: none, but see below

Timing: n S + 1 N + 1 I (n=no. of words transferred)
+ 1 S + 1 N if RlS loaded

If the condition is true between one and 16 registers may be loaded from memory
using this instruction. Any subset of registers, not necessarily contiguous, may be
included in the reg_list. Several instruction variations are allowed, indicating
whether the registers are to be loaded in ascending or descending address order
and whether the base address register (Rn) is to be incremented or decemented
before or after each register load. The lowest numbered register is always loaded
with the contents of the lowest address generated.

The instruction mode is chosen from the following list:

Mode Meaning Use Function

IB/ ED Increment Before Pop upwards Pre-increment

IA/ FD Increment After Pop upwards Post-increment

DB/ EA Decrement Before Pop downwards Pre-decrement

DA/ FA Decrement After Pop downwards Post-decrement

The mnemonics after the slash are allowed as alternatives; E/F for empty I full, A/
D for ascending/ descending.

Rn is any register in the range 0 .. 15 and ! controls whether the updated
address is written back to the register.

(reg_ l is t} (braces mandatory) is the list of registers to be loaded, in any
order. The instruction contains a 16-bit field comprising one bit per register so
arbitrary lists are permissible.

I\ sets the S field of the instruction and affects the behaviour of this instruc­
tion differently according to whether or not rlS (PC) is included in the list. If it is,
S set causes the SPSR_mode to be transferred to the CPSR at the same time as rlS
(PC) is loaded.

If rlS (PC) is not included in reg_list then I\ causes the User mode registers
specified to be transferred instead of the registers of the mode in which the
instruction is executed, useful for restoring state on process switches. This feature
is only available in Supervisor mode (it has no effect in User modes)

Appendix A 223

LOR
Load register from memory Rd=[address]

Syntax : LDR{condition}{B}{T} Rd , address{ ! }

Flags affected: none, but see below

Timing: lS+lN+ll
+ 1 S + 1 N if R15 loaded

If the condition is true a register is loaded with the 8-bit or 32-bit value at the spec­
ified address. The address of the operand may be relative to any register (includ­
ing PC) and the register may be auto incremented or decremented. Several
register-addressing modes are available (see below). The T option can be used to
force address translation in Supervisor mode (simulating User mode).

A 32-bit load is performed unless B is specified, in which case an 8-bit load
is performed instead (see also below). If present, T forces address translation (not
allowed for pre-indexed forms). Rd can be any register 0 .. 15 and ! causes write­
back of the modified register value after use.

address can be any of the following addressing modes:

Mode Effective address Indexing

[Rn] Rn None

[Rn, #expression] Rn expression Pre-indexed

[Rn, +/ -Rm] Rn+ / -Rm Pre-indexed

[Rn, +/ - Rm, shift #count] Rn +I - (Rm shifted by count) Pre-indexed

[Rn], #expression Rn Post-increment

[Rn], +/ -Rm Rn Post-increment

[Rn],+/ - Rm, shift #count Rn Post-increment

Rn is any register number 0 .. 15 and holds the base address, Rm is any other regis­
ter and holds a signed address increment, expression is an expression evaluating
to a result in the range -4095 to +4095, shift is one of LSL, LSR, ASR, ROR, RRX
and count is a constant in the range 1..31 representing the shift count, which may
not come from a register.

The address increment is the value added to the base; it is added to Rn
before the transfer when pre-indexing is used (indicated by placing it inside the
brackets) and after the transfer when post-indexing is used (indicated by placing
it outside the brackets). In pre-indexed modes if the! follows the] then Rn is

224 Appendix A

LOR
also incremented, that is post-increment mode.

RlS (PC) must never be used as Rm, nor as Rn if write-back is specified with
!. When using RlS as the base (Rn) remember that it contains an address advanced
by 8 from the current instruction.

The precise action of this instruction depends on the CPU byte sex configu­
ration; refer to Chapter 7 for further information.

The CPU state after this instruction is affected by the CPU's early /late abort
configuration. When configured for early aborts any base register write-back is
prevented if an abort occurs. When configured for late aborts the write-back is
allowed and the abort handler must correct for this before re-executing the
instruction.

Appendix A 225

MCR
Move CPU register to coprocessor cRn = rRn {<op> cRm}

Syn tax : MCR{condi tion} pcp_ no , cp_ opc , r Rd , cRn , cRm
{ , expression}

Flags affected: none

Timing: 1S+(b+l)I+1 C (b=no. busy cycles)

If the condition is true a coprocessor register is loaded with a value from an ARM
register, optionally performing an operation before the transfer. This is the form of
instruction which is used to provide the floating-point FLT operation, converting
an integer from ARM into a floating-point number before the transfer.

The parameters are: pcp_ no (a coprocessor number 0 .. 15), cp_opc (an
opcode 0 .. 15), rRd (an ARM register), cRn/ cRm (coprocessor registers) and an
optional expression giving a result 0 .. 7.

For example:

MCR p5 , 0 , rl , c3 , c5 ; cR3 . - OpO(rl)

226 Appendix A

MLA
Multiply and accumulate Rd = (Rm * Rs) + Rn

Syntax : MLA{condit i on}{S} Rd , Rm , Rs , Rn

Flags affected: N,Z,C, V

Timing: 1 S + m I (m=no. mutiplication cycles)

If the condition is true, signed multiply Rm by Rs and add Rn to give a 32-bit
result in Rd. The result is the 32 LSBs of the multiplication, so higher-precision
results may be calculated using several instructions. Registers Rd and Rm may
not be the same and R15 (PC) must not be used in any position. The flags are set
only if the S option is used.

The multiplication is performed using a modified Booth's algorithm which
will complete in no more than 16 I-cycles; leading zeros will reduce the time still
further.

For example:

MLA rl, r2, r3 , r4 ; rl : =r2 * r3+r4

Move register or constant Rd= Op2

Syntax : MOV{condition}{S} Rd , Op2

Flags affected:

Timing:

N,Z, C

lS
+ 1 S for shift (Rs)
+1S+1 N if RlS written

Appendix A 227

MOV

If the condition is true move a 32-bit value from one register to another or move
an 8-bit constant, possibly rotated, into a register. If present, S sets the flags after
the move.

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm, RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl

is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating a MVN instruction with the l 's complement
of the constant instead. If this second attempt also fails it produces an error.

For example:

MOV PC, LK ; Re turn

MOV Rl , #Ox87654321 ; load constant

MOVEQ RB , R6 , LSR R3 ; RB : =R6 shifted

228 Appendix A

MRC
Move from coprocessor to CPU registerRn = CRn {<Op> CRm}

Syntax: MRC{condition} pcp_no, expressionl, rRd, cRn ,
cRm { ,expression}

Flags affected: none

Timing: 1S+bI+1 C (b=no. of busy cycles)

If the condition is true a CPU register is loaded with a value from a coprocessor
register, optionally performing some operation before the transfer.

The parameters are: pcp_ no (a coprocessor number 0 .. 15), cp_opc (an
opcode 0 .. 15), rRd (an ARM register), cRn/cRm (coprocessor registers) and an
optional expression giving a result 0 .. 7.

For example:

MRC p2, 5, r3 , c5, c6; r3:=0p5(c5,c6)

Appendix A 229

MRS
Move status/flags (PSR) to register Rn = PSR

Syntax: MRS{condition} Rd, psr

Flags affected: none

Timing: 1 S

If the condition is true move (copy) the Current Program Status Resgister (CPSR)
or Stored Program Status Register (in non-User modes) to a specified register.
Only non-User modes have an SPSR, it being the CPSR value stored as a result of
the last mode change. The SPSRs for other modes are not accessible except by
changing mode.

Rd is the destination CPU register. R15 (PC) may not be used as a destina­
tion register.

psr may be one of CPSR/CPSR_all (synonyms), or SPSR/SPSR_all (syno­
nyms).

For example:

MRS Rtemp, CPSR; copy current flags

MRS Rtemp , SPSR_all; copy stored flags

230 Appendix A

MSR
Move register to status/flags (PSR) PSR = Rm

Syntax : MSR{condition} psr , Rm

MSR{condition} psrf , Rm

MSR{condition} psrf , expression

Flags affected:

Timing: lS

If the condition is true move (copy) a register to the specified Current or Stored
Program Status Register (CPSR/ SPSR). In User Mode only the CPSR exists to be
altered; in other modes the CPSR and the SPSR for the current mode alone are
available.

Either the whole PSR or just the flags may be written, according to which
variant form of the instruction is used.

Rm is the source CPU register.
psr is one of CPSR/ CPSR_all (synonyms) or SPSR/ SPSR_all (synonyms)
psrf is one of CPSR_flg or SPSR_flg (flag-only transfers)
expression must be able to be generated from a shifted 8-bit field; the top

four bits of the result will be transferred. An error will be generated if the expres­
sion value given cannot be generated in this way.

For example, to change processor mode (in a non-User mode):

MRS

BIC

ORR

MSR

To alter only the flags :

MSR

Rtemp, CPSR ; copy CPSR
Rtemp , Rtemp , #&lF ; clear mode bits

Rtemp , Rtemp, #new_ mode ; select mode

CPSR, Rtemp ; write new CPSR

CPSR_ flg , #&FOOOOOOO ; set all flags

; no control change

Appendix A 231

MUL
Multiply Rd= Rm* Rs

Syntax : MUL{condition}{S} Rd, Rm , Rs

Flags affected: N, Z,C

Timing: 1 S + m I (m=no. of multiplication cycles; see Chapter 2)

If the condition is true, signed multiply Rm by Rs to give a 32-bit result in Rd. The
result is the 32 LSBs of the multiplication, so higher-precision results may be cal­
culated using several instructions. Registers Rd and Rm may not be the same and
RlS (PC) must not be used in any position. The flags are set only if the S option is
used.

The multiplication is performed using a modified Booth's algorithm which
will complete in no more than 16 I-cycles; leading zeros will reduce the time still
further.

For example:

MUL Rl, R2 , R3 ; Rl : =R2 *R3

The following code fragment multiplies the two registers rO, rl containing
32-bit integers to give a 64-bit result in r2, r3. rS is a temporary register and rO and
rl are corrupted.

mul64 MOV rs , rO, LSR #16; rS : =top half of rO
MOV r3 , rl, LSR #16; r3 : = top half of rl

BIC rO, rO , rS , LSL #16 ; rO:= bot half of rO
BIC rl, rl, r3, LSL #16 ; rl : = bot half of rl

MUL r2, rO, rl partial result
MUL rl , rs , rl partial result
MUL rO , r3, rO partial result
MUL r3 , rS , r3 partial result
ADDS rO , rl, rO add middle parts

ADDCS r3, r3 , #&10000 ; carry from above
ADDS r2, r2, rO , LSL #16; r2=32 LSB result
ADC r3, r3 , rO , LSR #16 ; r3=32 MSB result

See also: MLA

232 Appendix A

MVN
Move negative register Rd = OxFFFFFFFF EOR Op2

Syntax : MVN{con d i t i on} {S } Rd, Op2

Flags affected: N,Z,C

Timing: lS
+ 1 S for shift (Rs)
+ 1 S + 1 N if RlS written

If the condition is true load the l's complement of Op2 into Rd, optionally setting
the flags if S is present.

The Op2 operand can be any of the following:

Rm , shift Rs
Rm , shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl is
any positive shift count in the range 1..31 and expression2 is any signed expres-·
sion rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an SBC instruction with the l 's complement
of the constant instead. If this second attempt also fails it produces an error.

For example:

MVN Rl2 , RS Rl2 : =NOT RS

No-operation

Syntax: NOP

Pseudo-instruction

Timing: lS

Appendix A 233

NOP

This pseudo-instruction is not conditional. It is assembled to an instruction which
takes a single S-cycle to execute but has no effect other than advancing the pro­
gram counter.

NOP is assembled to MOV rO, rO.

234 Appendix A

ORR
Logical OR Rd= Rn OR Op2

Syn tax : ORR{condi tion}{S} Rd , Rn , Op2

Flags affected:

Timing:

N,Z, C

lS
+ 1 S for shift (Rs)
+1S+1 N if R15 written

If the condition is true a 32-bit bitwise logical OR is performed with Rn and Op2
and the result stored in Rd. The flags are set only if the S option is used.

The Op2 operand can be any of the following:

Rm, shift Rs
Rm, shift #expressionl
Rm , RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

For example:

ORR RO, RO , #32 ; convert ASCII lower case?

Appendix A 235

RSB
Reverse subtract Rd= Op2- Rn

Syntax : RSB{condit i on}{S} Rd, Rn , Op2

Flags affected: N, Z, C, V

Timing: lS
+ 1 S for shift (Rs)
+ lS + 1 N if RlS written

If the condition is true perform a subtraction, equivalent to SUB except that the
operands are reversed. This is attractive since SUB only allows flexible addressing
for the second operand (the first must be a register) so this instruction allows the
same flexibility for the first operand. The flags are set only if the S option is used.

The Op2 operand can be any of the following:

Rm, shift Rs

Rm, shift #expressionl
Rm , RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl

is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

For example:

RSB R5, R5, #OxEAOOOOOO; R5 : = OxEA000000 - R5

236 Appendix A

RSC
Reverse subtract with carry(borrow) Rd = Op2 - Rn - 1 + Carry

Syn tax : RSC{condition}{S} Rd , Rn , Op2

Flags affected: N,Z, C, V

Timing: lS
+ 1 S for shift (Rs)
+ lS + 1 N if RlS written

If the condition is true perform a subtract with carry (borrow), equivalent to SBC
except that the operands are reversed. This is attractive since SBC only allows flex­
ible addressing for the second operand (the first must be a register) so this instruc­
tion allows the same flexibility for the first operand. The flags are set only if the S
option is used.

The Op2 operand can be any of the following:

Rm, shift Rs
Rm, shift #expressionl
Rm, RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

For example:

RSC Rl, R2, R3, LSL #3 ;

Appendix A 237

SBC
Subtract with carry Rd = Rn - Op2 - 1 + Carry

Syntax: SBC{condition}{S} Rd, Rn, Op2

Flags affected: N,Z,C,V

Timing: lS
+ 1 S for shift (Rs)
+ lS + 1 N if RlS written

If the condition is true subtract two 32-bit operands storing the result in a register.
The value + 1 is subtracted from the difference if the Carry flag was clear before
the instruction; nothing is subtracted if the Carry flag was set. The flags are set
only if the S option is used.

This instruction is well suited to multi-precision calculations; the lowest
order words should be subtracted using SUB (possibly generating a Carry) and
then the next most significant word pairs subtracted using this instruction until
the most significant pair has been subtracted.

Rd is the destination, Rn the first operand.
The Op2 operand can be any of the following:

Rm, shift Rs

Rm, shift #expressionl
Rm, RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl

is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an ADC instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

For example, the following sequence performs a 64-bit subtraction of R2,R3
from RO,Rl:

Sub64 SUB
SBC

RO , RO, R2
Rl , Rl, R3

LSBs
MSBs & borrow

238 Appendix A

STC
Store coprocessor register to memory address"' CRn

Syntax : STC{condit i on}{L}{T} cp#, CRn , address{!}

Flags affected: none

Timing: (n-1) S + 2 N + b I (n=no. of words, b=no. of busy cycles)

If the condition is true store the contents of coprocessor register to memory at the
address calculated. This is the equivalent of STR for a coprocessor.

The L option controls a hardware-specific feature of the coprocessor; by con­
vention L=l implies a long transfer and L=O a short one. The T option controls
whether or not the CPU Trans signal is asserted (T=l asserts Trans) causing
address translation to occur. For the coprocessor, cp# is the coprocessor number,
CRn the coprocessor register. The address may take one of the following forms:

expression

[Rn] T suffix not allowed
[Rn , expression]T suffix not allowed

[[Rn], expression]

where Rn is a CPU register and expression is in the range -1023 to + 1023 bytes rel­
ative to PC.

Appendix A 239

STM
Store multiple registers Stack manipulation (push)

Syn tax : STM{condition}mode Rn{ ! },{{reg_ list}}{A}

Flags affected: none

Timing: (n -1) S + 2 N (n=no. of words)

If the condition is true between one and sixteen registers may be stored to mem­
ory using this instruction. Any subset of registers, not necessarily contiguous,
may be included in the reg_list. Several instruction variations are allowed, indi­
cating whether the registers are to be stored in ascending or descending address
order and whether the base address register (Rn) is to be incremented or decre­
mented before or after each register store. The lowest address is always loaded
with the contents of the lowest register number.

The instruction mode is chosen from the following list:

Mode Meaning Use Function

IB/ FA Increment Before Push upwards Pre-increment

IA/ EA Increment After Push upwards Post-increment

DB/ FD Decrement Before Push downwards Pre-decrement

DA/ ED Decrement After Push downwards Post-decrement

The mnemonics after the slash are allowed as alternatives; E/ F for empty I
full , A I D for ascending/ descending.

Rn is any register in the range 0 .. 15 and ! controls whether the updated
address is written back to the register.

{ reg_ l is t} (braces mandatory) is the list of registers to be stored, in any
order. The instruction contains a 16-bit field comprising one bit per register, so
arbitrary lists are permissible.

The optional caret suffix " causes sets the S field of the instruction forcing
the transfer of the User mode registers listed instead of the registers of the mode
in which the instruction is executed.

240 Appendix A

STR
Store register to memory <address> = Rd

Synt ax : STR{condition }{B}{T} Rd, address { ! }

Flags affected: none

Timing: 2N

If the condition is true store a register with the 8-bit or 32-bit value at the specified
address. The address of the operand may be relative to any register (including
PC) and the register may be auto incremented or decremented. Several register
addressing modes are available (see below). The T option can be used to force
address translation in Supervisor mode (simulating User mode).

A 32-bit store is performed unless B is specified, in which case an 8-bit store
is performed instead. If present T forces address translation (not allowed for pre­
indexed forms) . Rd can be any register 0 .. 15 and! causes write-back of the modi­
fied register value after use.

address can be any of the following addressing modes:

Mode Effective address Indexing

[Rn] Rn None

[Rn, #expression] Rn expression Pre-indexed

[Rn, +/ -Rm] Rn +/ -Rm Pre-indexed

[Rn,+ / - Rm, shift #count] Rn +I - (Rm shifted by count) Pre-indexed

[Rn], #expression Rn Post-increment

[Rn], +/ -Rm Rn Post-increment

[Rn], +I - Rm, shift #count Rn Post-increment

Rn is any register number 0 .. 15 and holds the base address, Rm is any other register
and holds a signed address increment, expression is an expression evaluating to
a result in the range -4095 to +4095, shift is one of LSL, LSR, ASR, ROR, RRX
and count is a constant in the range 1..31 representing the shift count.

The address increment is the value added to the base; it is added to Rn
before the transfer when pre-indexing is used (indicated by placing it inside the
brackets) and after the transfer when post-indexing is used (indicated by placing
it outside the brackets). In pre-indexed modes shown above if the ! follows the]
then Rn is also incremented, that is post-increment mode.

Appendix A 241

STR
RlS (PC) must never be used as Rm, nor as Rn if write-back is specified with

!. When using RlS as the base (Rn) remember that it contains an address advanced
by 8 from the current instruction.

The precise action of this instruction depends on the CPU byte sex configu­
ration; refer to Chapter 7 for further information.

The CPU state after this instruction is affected by the CPU's early /late abort
configuration. When configured for early aborts any base register write-back is
prevented if an abort occurs. When configured for late aborts the write-back is
allowed and the abort handler must correct for this before re-executing the
instruction.

242 Appendix A

SUB
Subtract Rd= Rn-Op2

Syntax : SUB{condition}{S} Rd , Rn , Op2

Flags affected: N, Z, C, V

Timing: lS
+ 1 S for shift (Rs)
+ lS + 1 N if R15 written

If the condition is true subtract one 32-bit operand from the other, storing the
result in a register. The flags are set only if the S option is used.

Rd is the destination and Rn the first operand.
The Op2 operand can be any of the following:

Rm, shift Rs

Rm, shift #expressionl
Rm , RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl

is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an ADD instruction with the l 's complement
of the constant instead. If this sernnd attempt also fails it produces an error.

Appendix A 243

SWI
Software Interrupt Operating System call

Syntax : SWI{condit i on} operand

Flags affected: none

Timing: 25+ 1 N

If the condition is true perform a 'software interrupt', causing the CPU to change
to Supervisor mode, passing a 24-bit operand for interpretation by the operating
system.

For example:

SWI &0007FC call OS with &7FC

244 Appendix A

SWP
Swap register with memory Rd:=[Rn], [Rn]:=Rm

Syntax : SWP { c ond}{ B } Rd, Rm, [Rn]

Flags affected: none

Timing: 1S+2N+ll

If the condition is true swap the byte or word between registers and memory. The
swap address is given by Rn. The contents of the address given by Rn are read
from external memory, ignoring any cached value if present. The source register
Rm is then written to the address and the value previously read from the address
is placed in the destination register Rd. The same register may be specified for
both source and destination.

The processor's LOCK pin is asserted high for the duration of this instruc­
tion to signal to the memory system that the operation should be indivisible, ie
that the memory should only be addressable by this processor until LOCK returns
low. This feature is important in implementing multi-processor systems, but
requires external hardware support.

A byte swap (B suffix present) expects to read data on D[7:0] for addresses
on a word boundary, bits D[15:8] for addresses on a word boundary plus one etc.
The selected byte is placed in the least significant eight bits of the destination reg­
ister and the remaining bits are filled with zeros. The byte to be written is
repeated four times across the data bus, so the external memory system must
select the relevant byte according to A[l :O].

R15 shall not be used as an operand (Rd, Rn, Rm) in a SWP instruction.
If a Data Abort occurs during a SWP instruction the processor's state will be

prevented from changing, regardless of whether the read or write part of the
sequence was aborted. The 'lateabt' configuration has no effect on the behaviour
of aborted SWP instructions.

Appendix A 245

TEQ
Test bitwise equality Flags = Rn EOR Op2

Sy n tax : TEQ{cond i tion}{P} Rn, Op2

Flags affected: N,Z,C

Timing: lS
+ 1 S for shift (Rs)

If the condition is true test the bitwise equivalence of the two 32-bit operands dis­
carding the result but setting the Negative and Zero flags (Carry is cleared and
overflow unaffected).

An S suffix is optional but is always implied.
The optional P suffix causes the PSR flags to be set according to the state of

bits 28 .. 31 of the result (that is PSR flag bit positions within the result) . The P form
of this instruction must not be used in 32-bit CPU modes.

Rn is the CPU register number for the first operand.
The Op2 operand can be any of the following:

Rm, shift Rs
Rm , shift #expressionl
Rm RRX
#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 1..32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl
is any positive shift count in the range 1..31 and expression2 is any signed
expression shiftable into an 8-bit value.

For example:

CMP rO, #31
TEQGT rO , #127
MOVLE rO , #"."

rO smaller than 31?
or r0==127?
less than 32 or == 127

246 Appendix A

TST
Test condition codes using AND maskflags = Rn AND Op2

Syntax : TST{condition}{P} Rn, Op2

Flags affected: N,Z,C

Timing: lS
+ 1 S for shift (Rs)

If the condition is true test one operand against the other by performing a 32-bit
logical AND, discarding the result but setting the flags.

An S suffix is optional but is always implied.
The optional P suffix causes the PSR flags to be set according to the state of

bits 28 .. 31 of the result (that is PSR flag bit positions within the result). The P form
of this instruction must not be used in 32-bit CPU modes.

Rn is the CPU register number of the first operand.
The Op2 operand can be any of the following:

Rm , shift Rs

Rm , shift #expressionl

Rm , RRX

#expression2

where Rd, Rn and Rm are any CPU register (0 .. 15), Rs is a register containing a shift
count in the range 0 .. 32, shift is any of ASL, LSL, LSR, ASR, ROR; expressionl

is any positive shift count in the range 1..31 and expression2 is any signed
expression rotatable by an even amount into an 8-bit value.

If a constant which is not an 8-bit value rotated by an even amount is speci­
fied, the Assembler tries generating an SBC instruction with the l's complement
of the constant instead. If this second attempt also fails it produces an error.

For example:

TST
BEQ

BNE

RO , #Ox82

Both_ Zero

Either_ Set

RO AND Ox82

Appendix B

Floating point instruction set

247

248 Appendix B

ABS
Absolute value Fd :=ABS (Fm)

Syntax : ABS{condit i on }precisi on {r ounding} Fd, <Fm I
va l ue>

If the condition is true this instruction evaluates the absolute value of the operand
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN of a different precision
to the destination precision of the instruction;

• Overflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction;

• Underflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction;

• Inexact: note this can only occur if the operand has a higher precision than
the destination precision of the instruction.

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 249

ACS
Arc cosine Fd := arccosine of Fm

Syntax : ACS{condition}precision{rounding} Fd, <Fm I
#value>

If the condition is true this instruction evaluates the arc cosine of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision m st be specified.

rounding optionally specifi s the rounding mode: the default is round to
nearest; otherwise P (round tow rds Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero .

Fd and Fm are any floating p int register (0 .. 7), and #value is one of the con­
stants: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 r 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signall ng NaN;
(b) If the operand is an infi · ;
(c) If the operand is a numb r lying outside the range +1 to-1, both ends

included.
• Overflow: cannot occur, sine the result always lies in the range 0 to Ht.

• Underflow: cannot occur, si ce ACS(l) is 0 exactly and the ACS of any
representable number less an 1 is more than 2"(-32) in magnitude.

• Inexact.

This instruction is assemb d to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that int ger instruction for further information.

250 Appendix B

ADF
Add floating Fd := Fn +Fm

Syntax : ADF{condition}precision{rounding} Fd , Fn , <Fm
I #value>

If the condition is true this instruction adds the operands and stores the rounded
result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For(+=)+ (-oo)
(c) For (-oo) + (+=)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 251

ASN
Arc sine Fd := arcsine of Fm

Syntax : ASN{condition}precisi on{roundi ng} Fd , <Fm I
va l ue>

If the condition is true this instruction evaluates the arc sine of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero) .

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is an infinity
(c) If the operand is a number lying outside the range +1 to-1, both
ends included.

• Overflow: cannot occur, since the result always lies in the range -rt/2 to
+rt / 2

• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

252 Appendix B

ATN
Arc tangent Fd := arctangent of Fm

Syntax: ATN{condition}precision{rounding} Fd, <Fm I
#value>

If the condition is true this instruction evaluates the arc tangent of the operand
and stores the result in the specified register. The rounding mode and precision
are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN
• Overflow: cannot occur, since the result always lies in the range -rt/2 to

+rt/2
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 253

CMF
Compare floating Flags := (Fn==Fm)

Syn t a x : CMF{ E }{con dition} Fn , <Fm I #value >

If the condition is true this instruction compares the two operands and sets the
flags according to their relation.

If present, the optional E suffix will cause an exception if either operand is a
NaN. Otherwise, an exception is only produced if one of the operands is a Signal­
ling NaN. See the section on floating-point exceptions for more details.

Fn and Fm are any floating point register (0 .. 7) and #value is one of the
constants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

The ARM CPU flags are set by this instruction in one of two ways according
to the state of the AC bit in the FPSR. Refer to the section in Chapter Four on the
FPSR for more details. With the FPSR AC bit clear the flags are affected by this
instruction as follows:

Flag Meaning Example

N less than Fn <-Fm

z equal

c greater than or equal Fn>=-Fm

v unordered

Note that when Fn and Fm are not equal N and C are not necessarily oppo­
sites: if the result is unordered they will both be clear. With the FPSR AC bit set:

N

z

c
v

Flag Meaning

less than

equal

greater than or equal, or unordered

unordered

Possible exceptions

• Invalid operation:
(CMF) If either operand is a signalling NaN.
(CMFE) If either operand is a NaN of any kind.

254 Appendix B

CNF
Compare negated floating Flags := (Fn== - Fm)

Syntax : CNF{E}{condition} Fn , <Fm I #value>

If the condition is true this instruction compares the first operand with the second
negated and sets the flags according to their relation.

If present, the optional E suffix will cause an exception if either operand is a
NaN. Otherwise, an exception is only produced if one of the operands is a Signal­
ling NaN. See the section on floating-point exceptions for more details.

Fn and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

The ARM CPU flags are set by this instruction in one of two ways according
to the state of the AC bit in the FPSR. Refer to the section in Chapter Four on the
FPSR for more details. With the FPSR AC bit clear the flags are affected by this
instruction as follows:

Flag Meaning Example

N less than Fn < -Fm

z equal

c greater than or equal Fn>=-Fm

v unordered

Note that when Fn and Fm are not equal N and C are not necessarily oppo­
sites: if the result is unordered they will both be clear. With the FPSR AC bit set:

Flag Meaning

N less than

Z equal

C greater than or equal, or unordered

V unordered

Possible exceptions

• Invalid operation:
(CNF) If either operand is a signalling NaN.
(CNFE) If either operand is a NaN of any kind.

Appendix B 255

cos
Cosine Fd := cosine of Fm

Sy n tax : COS{condit i on}preci s i on{rounding} Fd , <Fm I
value>

If the condition is true this instruction evaluates the cosine of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con-
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0. ·

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is an infinity
(c) If the operand is a number which is so large in magnitude that range­
reducing it to a number in the range -n: to +n: would be very inaccurate (the
exact point at which this happens may vary between implementations);

• Overflow: cannot occur, since the result always lies in the range -1 to + 1
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

256 Appendix B

DVF
Divide floating Fd := Fn I Fm

Syntax: DVF {condi tion}precision { r ounding} Fd, Fn, <Fm
I #value>

If the condition is true this instruction divides the first operand by the second
operand and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For o Io
(c) For (±oo) / (±oo)

• Divide-by-zero:
If the second operand is 0 and the first operand is a non-zero number (if the
first operand is 0, an invalid operation exception is produced instead)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 257

EXP
Exponentiation Fd := e Fm

Syntax: EXP{condition}precision{rounding} Fd , <Fm I
#value>

If the condition is true this instruction raises e to the power of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN
• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

258 Appendix B

FDV (single-prec.)
Fast divide floating Fd := Fn I Fm

Syntax : FDV{condition}precision{rounding} Fd , Fn , <Fm
I #value>

If the condition is true this instruction divides the first operand by the second
operand and stores the rounded result in the specified register.

This instruction is only defined to yield single-precision results. It is not
guaranteed that any particular implementation will execute this 'fast' instruction
any faster than its normal counterpart DVF.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For o Io
(c) For(±=) / (±=)

• Divide-by-zero: if the second operand is 0 and the first operand is a non­
zero number (if the first operand is 0, an invalid operation exception is
produced instead)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 259

FIX
Convert floating to integer Rd := FIX(Fm)

Syntax : FIX{condition}{rounding} Rd , Fm

If the condition is true this instruction takes the integer value of the operand and
transfers it to the specified CPU integer register.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero) .

Fm is any floating point register (0 .. 7). Constants cannot be specified in the
Fm field for this instruction; it is quicker to load the integer directly into the CPU
register using MOV.

If Rd is r15 (PC) the top four bits of the result will be loaded into the CPSR
flags N, Z, C, V and the remaining 28 bits will be discarded.

Possible exceptions

• Invalid operation:
(a) If the operand is a NaN of any kind
(b) If the operand is ±=
(c) If FIXing the operand (with the specified rounding mode) will overflow

the integer range of-2"31to2"31-1
• Overflow cannot occur: if the integer range is exceeded, the instruction

produces an invalid operation exception (overflow exceptions are only
allowed to occur on instructions with floating point destinations)

• Underflow cannot occur, since the desired result is always an integer
• Inexact: the FIX instruction produces the inexact exception if its result is not

exactly equal to its operand, i.e. if the operand was not equal to an integer
(and an invalid operation exception did not occur)

This instruction is assembled to an ARM Coprocessor Register Transfer
(MRC) instruction; refer to that integer instruction for further information.

260 Appendix B

Convert integer to floating Fd := FLT(Rd)

Syntax : FLT{condition}precision{rounding} Fn, Rd

If the condition is true this instruction converts the integer in the CPU register Rd
to a floating-point value of specified precision and stores the rounded result in the
floating-point register Fd.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Rd is any CPU register 0 .. 14. Do not specify R15 (PC) as Rd.

Possible exceptions

• Overflow: cannot occur, since the operand is at most 2"31 in magnitude
• Underflow: cannot occur, since the operand is always an integer
• Inexact: note this is only possible for FLTS, since double and extended pre­

cision numbers can represent all integers in the range -2"31to2"31-1
exactly

This instruction is assembled to an ARM Coprocessor Register Transfer
(MCR) instruction; refer to that integer instruction for further information.

Appendix B 261

FML
Fast multiply floating Fd := Fn *Fm

Syntax : FML{condition}precision{rounding} Fd, Fn, <Fm
I #value>

If the condition is true this instruction multiplies the first operand by the second
operand and stores the rounded result in the specified register.

This instruction is only defined to work with single-precision source oper­
ands. It is not guaranteed that any particular implementation will execute this
'fast' instruction any faster than its normal counterpart MUF.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For (±oo) * 0
(c) For 0 * (±oo)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

262 Appendix B

FRO
Fast reverse divide floating Fd := Fn/Fm

Syntax : FRD{condition}precision{rounding} Fd, <Fm I
#value>

If the condition is true this instruction divides the second operand by the first
operand and stores the rounded result in the specified register.

This instruction is only defined to work with single-precision source oper­
ands. It is not guaranteed that any particular implementation will execute this
'fast' instruction any faster than its normal counterpart RDF.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero). I

Fd and Fm are any floating point register (0 .. !7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For o I o
(c) For (±00) I (±00)

• Divide-by-zero: If the first operand is 0 and 1the second operand is a non­
zero number (if the second operand is 0, an invalid operation exception is
produced instead)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 263

LDF
Load floating Fd := address

Syntax: LDF{condition}precision Fd, address

If the condition is true this instruction loads the specified floating-point register
with a value from memory at the specified precision.

precision determines the size and precision of the value loaded:

Suffix Precision Size of value

s single precision one 32-bit word

D double precision two 32-bit words

E extended precision three 32-bit words

p packed decimal three 32-bit words

If the EP flag in the FPSR is set then expanded packed decimal format is
used when P is specified, occupying four 32-bit words instead of three. This
allows conversion between binary and decimal formats with sufficient accuracy
to preserve extended precision values.

The address may take one of several forms to allowing indexing variations:

Address Offset Indexing

[Rn] no offset pre-indexed

[Rn, #expression]{!} offset of expression pre-indexed

[Rn], #expression offset of expression post-indexed

The address offset is specified in words and must be divisible by four and in the
range -1020 to +1020. The offset is added to or subtracted from the base register
Rn either before (pre-indexed) or after (post-indexed) being used as the transfer
address. The modified base value may either be written back always (in the post­
indexed form), or is written back if ! is present in the pre-indexed form, or is pre­
served.

RlS must not be used as the base register if write-back is specified in pre­
indexed modes nor used at all in post-indexed modes.

Possible exceptions

None for unpacked forms (S/D/E suffix).

264 Appendix B

LDF
Possible exceptions for LDFP:

• Invalid operation: if the operand is a signalling NaN
• Overflow
• Underflow
• Inexact

Appendix 8 265

LFM
Load floating multiple Pop floating registers

Syntax: LFM{condition} Fd, count, address

LFM{condition}<FDIEA> Fd, count, [Rn) { ! }

If the condition is true this instruction loads a specified number of floating-point
registers from memory in a single operation. A variety of addressing modes are
supported, allowing stacks to be implemented for efficient context switching.

'Fd, count' indicates which registers will be loaded. 'Fd' stands for the first
register to be loaded and 'count' for the total number of registers loaded in the
range 1..4. The registers loaded are successive starting with Fd and wrap around
from F7 to FO; for example, F6, 4 stands for F6, F7, FO, Fl in that order.

Two alternative syntaxes are allowed, the former having traditional pre­
and post-indexing style, the latter having the LDM/STM style supported by inte­
ger instructions.

The values are transferred as three 32-bit words per floating-point register.
The format of these words is not defined and may change, so the only legitimate
operations are to load (LFM) and store (SFM) them.

The address may take one of several forms to allowing indexing variations:

Address

[Rn)

[Rn, #expression]{!}

[Rn], #expression

Offset

no offset

offset of expression

offset of expression

Indexing

pre-indexed

pre-indexed

post-indexed

The address offset is specified in words and must be divisible by four and in
the range -1020 to + 1020. The offset is added to or subtracted from the base regis­
ter Rn either before (pre-indexed) or after (post-indexed) being used as the trans­
fer address. The modified base value may either be written back always (in the
post-indexed form), or is written back if ! is present in the pre-indexed form, or is
preserved.

Note that only EA and FD are permitted: alternative forms available in inte­
ger instructions are not permitted for LFM/SFM.

R15 must not be used as the base register if write-back is specified in pre­
indexed modes nor used at all in post-indexed modes.

Possible exceptions

•None

266 Appendix B

LGN
Logarithm to base e Fd := log e of Fm

Syntax: LGN {condit ion }precision{rounding} Fd, <Fm I
#value>

If the condition is true this instruction evaluates log to base e of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is negative

• Divide-by-zero: if the operand is 0
• Overflow: cannot occur, since the operand lies in the range 2"(-16446) to

2"16384 and so the result always lies in the range -16446*LOG(2) to
16384*LOG(2)

• Underflow: cannot occur, since LGN(l) is zero exactly and the operand
must otherwise lie at least 2"(-64) away from 1. The LGN of a number
which is not 1 is therefore at least 2"(-65) in magnitude, and so will not
underflow even in single precision

• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 267

LOG
Logarithm to base 10 Fd := log10 of Fm

Syntax: LOG{condition}precision{rounding} Fd, <Fm I
va l ue>

If the condition is true this instruction evaluates log to base 10 of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is negative

• Divide-by-zero: if the operand is 0
• Overflow: cannot occur, since the operand lies in the range 2"(-16446) to

2"16384 and so the result always lies in the range -16446*LOG(2) to
16384*LOG(2)

• Underflow: cannot occur, since LOG(l) is zero exactly and the operand
must otherwise lie at least 2"(-64) away from 1. The LOG of a number
which is not 1 is therefore at least 2"(-66) in magnitude, and so will not
underflow even in single precision

• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

268 Appendix B

MNF
Move floating negated Fd :=-Fm

Syntax: MNF{condition}precision{rounding} Fd, <Fm I
#value>

If the condition is true this instruction negates the operand and stores the
rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN of a different precision
to the destination precision of the instruction

• Overflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Underflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Inexact: note this can only occur if the operand has a higher precision than
the destination precision of the instruction

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 269

MUF
Multiply floating Fd := Fn *Fm

Syntax: MUF{condition}precision{rounding} Fd, Fn, <Fm
I #value>

If the condition is true this instruction multiplies the first operand by the second
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
{b} For {±oo} * 0
(c) For 0 * {±oo}

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

270 Appendix B

MVF
Move floating Fd :=Fm

Synta x : MVF{con dition}pre cision {roun ding } Fd, <Fm I
v al ue >

If the condition is true this instruction moves the operand to the specified register;
the operand is delivered at the appropriate precision and rounding is performed.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero) .

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN of a different precision
to the destination precision of the instruction.

• Overflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction.

• Underflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction.

• Inexact: note this can only occur if the operand has a higher precision than
the destination precision of the instruction.

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 271

NRM
Normalize result of URD Fd := normalized Fm

Sy n tax : NRM{condit i on }precision{ roun ding} Fd , <Fm I
#va lue>

If the condition is true this instruction normalizes the result of a previous URD
instruction; the precision and rounding mode of an NRM instruction must match
those of the preceding URD instruction, it may deliver meaningless results when
applied to any other value. Refer to the URD instruction for further information.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero) .

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN
• Overflow, underflow and inexact: can only occur when NRM is used in an

incorrect way, that is on anything other than the result of an URD instruc­
tion with the same destination precision

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

This instruction does not exist in floating-point systems pre-dating the
FPAlO.

272 Appendix B

POL
Polar angle (ArcTan2) Fd := polar angle (Fn, Fm)

Syntax: POL{condition}precision{rounding} Fd, <Fm
#value>

If the condition is true this instruction evaluates the 'polar angle' function
ArcTan2(Fn, Fm), which is closely related to arc tangent(Fm/Fn) and stores the
rounded · result in the specified register. The rounding mode and precision are
only applied to the final result of the calculation; intermediate results are always
rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) If both operands are 0
(c) If both operands are ±oo

• Overflow: cannot occur, since the result is always in the range -7t to +7t

• Underflow
• Inexact.

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 273

POW
Power Fd := Fn raised to Fm

Syn t ax: POW{condi ti on }preci s i on {round ing } Fd, Fn , <Fm
I # val ue >

If the condition is true this instruction evaluates Fn raised to the power of Fm and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) If the first operand is negative and the second is not a NaN (on some
systems, this invalid operation won't occur if the second operand is exactly
equal to an integer)
(c) If the first operand is 0 and the second is negative or 0 (on some systems,
this invalid operation won't occur if the second operand is exactly equal to
an integer)
(d) If the first operand is + 1 and the second is an infinity
(e) If the first operand is an infinity and the second is 0 (on some systems,
this invalid operation won't occur)

• Divide-by-zero: If the first operand is 0 and the second is exactly equal to a
negative integer (on some systems only)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

274 Appendix B

RDF
Reverse divide floating Fd :=Fm I Fn

Syntax : RDF{condition}preci s i on{rounding} Fd , Fn , <Fm
I #va l ue >

If the condition is true this instruction divides the second operand by the first and
stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For 0 I 0
(c) For (±00) I (±00)

• Divide-by-zero: If the first operand is 0 and the second operand is a non­
zero number (if the second operand is 0, an invalid operation exception is
produced instead)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Read floating-point control register Rd := FPCR

Syntax : RFC{condit i on} Rd

Appendix B 275

RFC

If the condition is true this instruction reads the Floating Point Control Register
(FPCR) and stores it in the specified integer CPU register, possibly DESTROYING
THE CONTENTS OF FPCR AS IT DOES SO. This instruction may only be exe­
cuted in Supervisor mode. See the section on the FPCR for more information.

This instruction deals with a register which is implementation-specific.

Possible exceptions

• None

The use of this instruction outside of floating-point support software is
strongly discouraged. Note that this instruction is for internal communication

· within a floating-point system, for example between the FPAlO and its support
software, and may not be implemented in some floating-point systems. Do not
use this instruction without referring to the documentation for the floating-point
package you are using.

276 Appendix B

RFS
Read floating-point status register Rd := FPSR

Syntax : RFS{condition } Rd

If the condition is true this instruction reads the Floating Point Status Register
(FPSR) and stores it in the specified integer CPU register. Refer to the section in
Chapter 9 on the FPSR for more information.

This instruction may be executed freely (unlike RFC/WFC) to allow user
programs to interrogate the floating-point system status.

Possible exceptions

•None

Appendix B 277

RMF
IEEE Remainder Fd := remainder of Fn/Fm

Syntax: RMF{condition}precision{rounding} Fd, Fn, <FM
I # value>

If the condition is true this instruction evaluates the IEEE remainder when the
first operand is divided by the second operand and stores the rounded result in
the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) If the first operand is +/-infinity and the second is not a NaN
(c) If the first operand is a number and the second is 0

• Overflow: this can only occur if at least one operand has a higher precision
than the destination precision of the instruction

• Underflow: this can only occur if at least one operand has a higher precision
than the destination precision of the instruction

• Inexact: this can only occur if at least one operand has a higher precision
than the destination precision of the instruction

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

278 Appendix B

RND
Round Fd := integer value of Fm

Syntax : RND{condition}precision{rounding} Fd, <Fm
value >

If the condition is true this instruction evaluates the integer value of the operand
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation: if the operand is a signalling NaN
• Overflow: this can only occur if the operand has a higher precision than the

destination precision of the instruction
• Underflow: cannot occur, since the result is always an integer
• Inexact: the RND instruction produces the inexact exception if its result is

not exactly equal to its operand; that is if the operand was not equal to an
integer, or if overflow occurs

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 279

RPW
Reverse power Fd := Fm raised to Fn

Syntax: RPW{condi t ion }precision {rounding } Fd, Fn, <Fm
I #val ue >

If the condition is true this instruction evaluates Fm raised to the power of Fn and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7, and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) If the second operand is negative and the first is not a NaN (on some

systems, this invalid operation won't occur if the first operand is exactly
equal to an integer)

(c) If the second operand is 0 and the first is negative or 0 (on some systems,
this invalid operation won't occur if the first operand is exactly equal to
an integer)

(d) If the second operand is+ 1 and the first is an infinity
(e) If the second operand is an infinity and the first is 0 (on some systems,

this invalid operation won't occur)
• Divide-by-zero: If the second operand is 0 and the first is exactly equal to a

negative integer (on some systems only)
• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

280 Appendix B

RSF
Reverse subtract floating Fd :=Fm- Fn

Syntax: RSF{condition}precision{rounding} Fd, Fn, <Fm
I #value>

If the condition is true this instruction subtracts the first operand from the second
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
{b) For (+oo)- (+oo)
(c) For (-oo) - (-oo)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 281

SFM
Store floating multiple Push floating registers

Syntax: SFM{condition} Fd, count, address

SFM {condition }<FDIEA> Fd, count, [Rn) { ! }

If the condition is true this instruction stores a specified number of floating-point
registers to memory in a single operation. A variety of addressing modes are sup­
ported, allowing stacks to be implemented for efficient context switching.

Fd, count indicates which registers will be loaded. Fd stands for the first
register to be loaded and count for the total number of registers loaded in the
range 1..4. The registers loaded are successive starting with Fd and wrap around
from F7 to FO; for example, F6, 4 stands for F6, F7, FO, Fl in that order.

Two alternative syntaxes are allowed, the former having traditional pre­
and post-indexing style, the latter having the LDM/STM style supported by inte­
ger instructions.

The values are transferred as three 32-bit words per floating-point register.
The format of these words is not defined and may change, so the only legitimate
operations are to load (LFM) and store (SFM) them.

The address may take one of several forms to allowing indexing variations:

Address Offset Indexing

[Rn] no offset pre-indexed

[Rn, #expression]{!) offset of expression pre-indexed

[Rn), #expression offset of expression post-indexed

The address offset is specified in words and must be divisible by four and in the
range -1020 to +1020. The offset is added to or subtracted from the base register
Rn either before (pre-indexed) or after (post-indexed) being used as the transfer
address. The modified base value may be written back always (in the post­
indexed form), or is written back if ! is present in the pre-indexed form, or is pre­
served.

Note that only EA and FD are permitted: alternative forms available in inte­
ger instructions are not permitted for LFM/SFM.

RlS must not be used as the base register if write-back is specified in pre­
indexed modes nor used at all in post-indexed modes.

Possible exceptions

• None

282 Appendix B

SIN
Sine Fd := sine of Fm

Syntax : SIN{condition}precision{rounding} Fd , <Fm I
#value >

If the condition is true this instruction evaluates the sine of the operand and stores
the rounded result in the specified register. The rounding mode and precision are
only applied to the final result of the calculation; intermediate results are always
rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is an infinity
(c) If the operand is a number which is so large in magnitude that range­

reducing it to a number in the range -7t to +n would be very inaccurate
(the exact point at which this happens may vary between implementa­
tions)

• Overflow: cannot occur, since the result always lies in the range -1 to + 1
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 283

SQT
Square root Fd := square root of Fm

Sy n t ax : SQT{condit i on}preci sion{ r o unding} Fd, <Fm I
#va lue>

If the condition is true this instruction evaluates the square root of the operand
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity}, M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is negative

• Overflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Underflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

284 Appendix B

STF
Store floating <address> := Fd

Syntax: STF{condition}precision Fd, address

If the condition is true this instruction stores the specified floating-point register
at the specified address with the specified precision.

precision determines the size and precision of the value stored:

Suffix Precision Size of value

s single precision one 32-bit word

D double precision two 32-bit words

E extended precision three 32-bit words

p packed decimal three 32-bit words

If the EP flag in the FPSR is set then expanded packed decimal format is
used when P is specified, occupying four 32-bit words instead of three. This
allows conversion between binary and decimal formats with sufficient accuracy
to preserve extended precision values.

The address may take one of several forms to allowing indexing variations:

Address Offset Indexing

[Rn] no offset pre-indexed

[Rn, #expression]{!) offset of expression pre-indexed

[Rn], #expression offset of expression post-indexed

The address offset is specified in words and must be divisible by four and in
the range -1020 to +1020. The offset is added to or subtracted from the base regis­
ter Rn either before (pre-indexed) or after (post-indexed) being used as the trans­
fer address. The modified base value may be written back always (in the post­
indexed form), or is written back if! is present in the pre-indexed form, or is pre­
served.

R15 must not be used as the base register if write-back is specified in pre­
indexed modes nor used at all in post-indexed modes.

Possible exceptions

STFS/D/E:

Appendix B 285

STF

• Invalid operation: if the operand is a signalling NaN of a different precision
to the destination precision of the instruction

• Overflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Underflow: note this can only occur if the operand has a higher precision
than the destination precision of the instruction

• Inexact: note this can only occur if the operand has a higher precision than
the destination precision of the instruction

STFP:

• Invalid operation: if the operand is a signalling NaN
• Overflow and underflow: cannot occur, since the range of both packed

format exceeds that of single, double or extended precision numbers
• Inexact

286 Appendix B

SUF
Subtract floating Fd := Fn- Fm

Syntax : SUF{condition}precision{rounding} Fd, Fn, <Fm
I # v alue>

If the condition is true this instruction subtracts the second operand from the first
and stores the rounded result in the specified register.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision <must> be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd, Fn and Fm are any floating point register (0 .. 7) and #value is one of the
constants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions

• Invalid operation:
(a) If either operand is a signalling NaN
(b) For (+=) - (+=)
(c) For(-=) - (-=)

• Overflow
• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

Appendix B 287

TAN
Tangent Fd := tangent of Fm

Syntax : TAN{condition}precision{rounding} Fd , Fn , Fml
#value

If the condition is true this instruction evaluates the tangent of the operand and
stores the rounded result in the specified register. The rounding mode and preci­
sion are only applied to the final result of the calculation; intermediate results are
always rounded to nearest at extended precision.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions:

• Invalid operation:
(a) If the operand is a signalling NaN
(b) If the operand is an infinity
(c) If the operand is a number which is so large in magnitude that range­

reducing it to a number in the range -n/ 2 to +n/ 2 would be very
inaccurate (the exact point at which this happens may vary between
implementations)

• Underflow
• Inexact

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

288 Appendix B

URD
Unnormalized round Fd := integer value of Fm

Syntax : URD{condition}pre cisi on { r oun di n g} Fd, Fm
#value

If the condition is true this instruction performs an unnormalized round on the
operand. This gives a floating-point result whose value is an integer result, possi­
bly in an abnormal form. The NRM instruction must be used on the result of URD
before the final result is meaningful. RND should be used in code expected to run
on all implementations of the ARM floating-point standard.

precision specifies the destination rounding precision: S (single), D (dou­
ble) or E (extended). A precision must be specified.

rounding optionally specifies the rounding mode: the default is Round to
nearest; otherwise P (round towards Plus infinity), M (round towards Minus
infinity) or Z (round towards Zero).

Fd and Fm are any floating point register (0 .. 7) and #value is one of the con­
stants 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5 or 10.0.

Possible exceptions:

• Invalid operation: if the operand is a signalling NaN
• Overflow: this can only occur if the operand has a higher precision than the

destination precision of the instruction
• Underflow: cannot occur, since the result is always an integer
• Inexact: the URD instruction produces the inexact exception if its result is

not exactly equal to its operand, that is if the operand was not equal to an
integer, or if overflow occurs

This instruction is assembled to an ARM Coprocessor Data Operation
(CDP) instruction; refer to that integer instruction for further information.

This instruction does not exist in floating-point hardware pre-dating the
FPAlO. The URD/ NRM instruction pair was introduced on the FPAlO to improve
implementation efficiency.

Appendix 8 289

WFC
Write floating-point control register FPCR := Rd

Syntax : WFC{condition} Rd

If the condition is true this instruction writes the specified integer CPU register to
the Floating Point Control Register (FPCR). This instruction may only be executed
in Supervisor mode. See the section on the FPCR for more information.

Possible exceptions

• None

This instruction deals with a register which is implementation-specific.
The use of this instruction outside of floating-point support software is

strongly discouraged. Note that this instruction is for internal communication
within a floating-point system, for example between the FPAlO and its support
software, and may not be implemented in some floating-point systems. Do not
use this instruction without referring to the documentation for the floating-point
package you are using.

290 Appendix B

WFS
Write floating-point status register FPSR := Rd

Syntax : WFS{condition} Rd

If the condition is true this instruction writes the specified integer CPU register to
the Floating Point Status Register (FPSR). Refer to the section in Chapter 9 on the
FPSR for more information.

This instruction may be executed freely (unlike RFC / WFC) to allow user
programs to alter the floating-point system status.

Possible exceptions

•None

Appendix C

Assembler directives

291

292 Appendix C

! (Test and assert)
Arithmetic test and assert error Diagnostic directive

Syntax : ! ari thmet i c - expression, string_expression

The ! directive is inspected on both passes of the assembly. The arithmetic expres­
sion following the directive is evaluated and its result used to determine whether
a user error condition is raised:

If the arithmetic expression evaluates to a non-zero result the string expres­
sion is printed as an error message and assembly halts after the first assembly
pass.

If the arithmetic expression evaluates to zero no action is taken during the
first pass and the string expression is printed as a warning during the second pass.

See also: ASSERT

Appendix C 293

(Reserve space)
Reserve space in storage map Store allocation

Syntax: {Label } # expression

Reserves the number of bytes specified by the expression in the storage map pre­
viously located using the " directive.

The label can optionally mark the storage space by name, allowing it to be
referred to in future load and store instructions.

See also:"

294 Appendix C

& (DCD)
Define constant word Store initialization

Syntax : Label & expression-list

Place word data at the current instruction location and advance the location coun­
ter. One or more words are defined by this directive, their expressions being sepa­
rated by commas.

For example:

Wordz DCD Wordl , Word2 , Word3 ;De fine three words

See also: DCD, =/ DCB, DCW

Appendix C 295

O/o

Zero fill/Local label introduction Store initialization/Local label

Syntax: Label % numeric-expression

As a store initialization directive % clears memory (to zero) starting at the current
location counter for as many bytes as the expression value indicates.

For example:

Null Table % &400 ; A lK table of nulls

The % symbol may also be used to introduce a local label. In this case it is
employed in the third listing column, in any position where a normal label might
have been used. For example:

BNE %FA16 bne to local label 16

See also: =/ DCB, DCW, &/DCD; ROUT

296 Appendix C

* (EQU)
Equate · Symbol definition

Syntax: Label * numeric explprogram-relative exp

Assign a numeric value to a symbol. Program-relative values can also be assigned
in this way.

For example:

Bell
Book
Candle

Label
Here

*
*
*

*
*

See also: EQU (synonym)

&07
&08
&09

SWI &1001
Label+4

Appendix C 297

-- (DCB)
Define constant byte Store initialization

Syntax : Label = expression-li s t

Place byte data at the current instruction location and advance the location coun­
ter. One or more bytes are defined by this directive, their expressions being sepa­
rated by commas.

For example:

ErrorZ "Error" , &00

Table &OO , &FF,&55,&AA

See also: DCB, DCD, DCW

298 Appendix C

[(IF)
IF

Syntax:

Conditional assembly

[logical exp

... instructions executed if expression
true ...

{ I

... instructions executed if expression
false ... }

Instruction sequences delimited by the IF and ENDIF directives, written [and],
are assembled only if the logical expression evaluates true at the time of assembly.
The optional directive ELSE, written I, allows instructions to be assembled if the
condition is false .

None of [, I or] may appear as the first character on any line of input to the
Assembler.

Lines not assembled as a result of these directives are not listed unless the
Assembler's -NOTERSE option is set.

See also:], I , WHILE, WEND

ENDIF

Syntax:

Appendix C 299

] (ENDIF)
Conditional assembly

[logical exp

... instructions executed if expression
true ...

{ I

. .. instructions executed if expression
false ... }

Instruction sequences delimited by the IF and ENDIF directives, written [and],
are assembled only if the logical expression evaluates true at the time of assembly.
The optional directive ELSE, written I, allows instructions to be assembled if the
condition is false.

None of [, I or] may appear as the first character on any line of input to the
Assembler.

Lines not assembled as a result of these directives are not listed either
unless the Assembler's -NOTERSE option is set.

See also: [, I , WHILE, WEND

300 Appendix C

I (ELSE)
ELSE

Syntax :

Conditional assembly

[logical exp

... instructions executed if express i on
true .. .

{ I

. . . instructions executed if expr ession
false ... }

Instruction sequences delimited by the IF and ENDIF directives, written [and],
are assembled only if the logical expression evaluates true at the time of assembly.
The optional directive ELSE, written I , allows instructions to be assembled if the
condition is false.

None of[, I or] may appear as the first character on any line of input to the
Assembler.

Lines not assembled as a result of these directives are not listed unless the
Assembler's -NOTERSE option is set.

See also: [,],WHILE, WEND

Appendix C 301

"(Storage map)
Set origin of storage map Storage allocation

Syntax: A expression{, base-reg}

Sets the origin of a storage reservation map to the address specified by the expres­
sion, optionally binding a named base register to simplify the syntax.

For example:

&00010000
Iteml # 4

Item2 # 8

Item3 # 4

Item4a # 2
Item4b # 2

whereupon references may be made to the items using LDR as follows:

LDR rO , [rl, #Iteml]

Since a second register (rl above) may be used to base the storage map a
register binding may be specified when the origin is set, as follows:

0 ' rl2
IO_ addr # 4
Buf Start # 4
BufSize # 4

CurrPtr # 4

LDR rO, IO_ addr; use of Rl2 implied

This style of LDR having a clearer syntax.

See also:# (Reserve space)

302 Appendix C

ALIGN
Align program location counter Storage allocation

Syntax : ALIGN {p ower_of_two }{, o ff s et-expressi on}

Force the program location counter to be aligned to the specified boundary,
advancing it and inserting up to three bytes of zeros if required. Since all ARM
instructions must be word-aligned this directive allows correct alignment to be
achieved after tables etc.

The default alignment is 4 (that is, word alignment) and the default offset
expression is 0.

Larger power-of-two values may be optionally specified to align to a coarser
address boundary; the offset expression may also specify a byte offset from that
boundary if required.

Next

For example:

="a string of odd length ! " ; 23 chars in fact
ALIGN get word boundary
MOV RO,RO ; correctly aligned

Appendix C 303

AREA
Define program areas Organizational directive

Sy n t ax : AREA name{ , attr}{ , attr} ... { , ALIGN=expres -
sion}

The AREA directive is used to notify the Assembler and Linker of an indivisible
chunk of code or data. AREA takes a name which may be optionally followed by
any of the following attributes:

Attribute

ABS

REL

PIC

CODE

DATA

READONLY

COMDEF

COMMON

NOINITData

REENTRANT

BASED Rn

Meaning

Absolute: rooted at a fixed address

Relocateable: may be relocated by the Linker (default)

Position Independent Code: executes wherever loaded

Contains machine instructions

Contains data, not instructions

The area will not be written to

Common area definition

Common area

AREA initialized to zero; must contain no initializations

The code area is re-entrant

Static base data area based at Rn; for use with LDR/ STR

The optional alignment subdirective forces the start of the area to be aligned
on a power-of-two boundary. By default, areas are aligned on word (that is 4-byte)
boundaries, but the expression can define any other boundary from 2 to 12 bytes.

See also: ENTRY

304 Appendix C

ASSERT
Logical test and assert error

Syntax : ASSERT logical - exp

Diagnostic directives

The logical expression is evaluated and if the result is FALSE the diagnostic mes­
sage ' Assertion failed' is generated during the second pass of assembly (only).

ASSERT may be used both inside and outside macros.
For example:

ASSERT ; always generates an error

See also: ! (Test and assert), which differs in being inspected on both assem­
bly passes

Appendix C 305

CN
Coprocessor register equate Symbol definition

Syntax : Label CN numeric-exp

Assign a coprocessor register number to a symbol. The symbol is treated as a con­
stant in an arbitrary expression; however, only coprocessor register names
equated using this directive are valid where a coprocessor register name is
required.

For example:

Scalarl
Scalar2

Vectorl

See also: FN, CP, RN

CN
CN

CN

0

1

7

306 Appendix C

CP
Coprocessor equate Symbol definition

Syntax : Label CP numeri c - exp

Assign a coprocessor number to a symbol. Like register names (see RN), coproces­
sor names are treated as constants in arbitrary expressions, but only a coprocessor
name is valid where a coprocessor number is required.

For example:

Fuzzy

Octal

MMU

CP
CP
CP

See also: CN, RN

5
6

15

Fuzzy logic coprocessor is #5

Octal arithmetic coprocessor #6

MMU control c oproces s or #15

Appendix C 307

DCB(=)
Define constant byte Store initialization

Syntax : Label DCB expression-list

Place byte data at the current instruction location and advance the location coun­
ter. One or more bytes are defined by this directive, their expressions being sepa­
rated by commas.

For example:

Errorz DCB "Error ", &00

Table DCB &00 , &FF,&55,&AA

See also: =, DCD, DCW

308 Appendix C

DCD (&)

Define constant word Store initialization

Syntax : Label & express i on - li s t

Place word data at the current instruction location and advance the location coun­
ter. One or more words are defined by this directive, their expressions being sepa­
rated by commas.

For example:

Wordz DCD Wordl , Word2, Word3;Define three words

See also: DCD, =/ DCB, DCW

Appendix C 309

DCFD
Define constant floating-point double-precision Store initialization

Syntax : Label DCFD fp - const{ ,fp - const}

Place a double-precision floating point constant (occupies two 32-bit words) at the
current location counter, which must already be word-aligned.

An fp-const takes one of the forms:

{- }integerE{ - }integer e . g . 3E8, - lE-3

{-}integer.integer{E{-}integer} e . g . 1 . 234E6

See also: DCFS

310 Appendix C

DCFS
Define constant floating-point single-precision Store initialization

Syntax : Label DCFS fp-const{ , fp-const}

Place a single-precision floating point constant (occupies one 32-bit word) at the
current location counter, which must already be word-aligned.

An tp-const takes one of the forms:

{- }integer{ - }integer for example 3E8 , -le-3

{- }integer .integer{E{integer for example 1 . 234E6

See also: DCFD

Appendix C 311

DCW
Define constant half-word Store initialization

Syntax : Label DCW expression - list

Place half-word data at the current instruction location and advance the location
counter. One or more half-words are defined by this directive, their expressions
being separated by commas.

For example:

A_ then_ null DCW "A" ;stores 65 then 0 in 2 bytes

See also: &/ DCD, =/ DCB

312 Appendix C

END
Finish assembly source file Organizational directive

Syntax : END

The END directive tells the Assembler to stop processing a source file .
If assembly of the file was invoked by a GET directive the Assembler returns

to the calling file and re-commences assembly after the calling GET.
If END is encountered in the top-level source file during the first pass of

assembly without any errors, the second pass begins. Reaching the end of a file
without encountering an END is an error.

Appendix C 313

ENTRY
Define AREA entry point Organizational directive

Syntax : {label} ENTRY

The ENTRY directive declares its offset within the containing AREA to be the
unique entry point to any program containing this AREA.

314 Appendix C

.EQU (*)

Equate Symbol definition

Syntax : Label * numeric - explprogram - relative-exp

Assign a numeric value to a symbol. Program-relative values can also be assigned
in this way.

For example:

Bell * &07
Book * &08
Candle &09

Label * SWI &1001
Here * Label+4

See also: * (EQU)

Appendix C 315

EXPORT
Declare symbol for linking Linking directives

Synt ax : EXPORT symbol{[FPREGARGS , DATA, LEAF]}

Declare a symbol for use at link time by other separate object files. The optional
parameters are as follows:

Parameter

FPARGREGS

DATA

LEAF

Purpose

Symbol expects floating-point arguments in FP registers

Symbol defines code segment data, not function/procedure

Symbol is function which calls no other functions

See also: IMPORT

316 Appendix C

FN
Floating-point register equate Symbol definition

Sy n t ax : Label FN numeric - expression

Assign a floating-point register number to a symbol. The symbol is treated as a
constant in an arbitrary expression; however, only register names equated using
this directive are valid where a register name is required.

Xdim
Ydim
Area

For example:

FN
FN
FN

fO
fl
f2

Appendix C 317

GBLA,GBLL,GBLS
Declare global variable Symbol definition

Syntax : GELA variable - name

GELL variable - name

GELS variable - name

Declare a global variable of type Arithmetic, Logical or String and assign the
given variable name to it. Global variables' scope extends across the entire source
file (but not beyond). Variables must be declared using either GBLx or LCLx
before use; the SETx directives may be used to assign values to them.

For example:

GBLA Editor_Mode_Number

GBLL File_Auto_Save_Flag

GBLS Fatal_Error_ String

See also: LCLx, SETx, MACRO

318 Appendix C

GET
Include file in assembly File linking directives

Syntax : GET f i 1 ename

Includes the named file into the file being assembled at this point. The included
file may in turn employ GET to include other files . All statements up to the END
of the included file are assembled and assembly then continues at the line follow­
ing the GET directive in the the including file.

See also: INCLUDE (synonym)

Appendix C 319

IMPORT
Announce external symbol Linking directives

Syntax : IMPORT symbol{[FPREGARGS]}{ , WEAK}

Provides the Assembler with a name (symbol) which is not defined in this assem­
bly but which will be resolved at link time to a symbol defined in another object
file assembled separately. The symbol is treated as a program address.

The optional parameters are as follows:

Parameter

FPARGREGS

WEAK

See also: EXPORT

Purpose

Symbol expects floating-point arguments in FP registers

Don't fault unresolved references during linking

320 Appendix C

INCLUDE
Include file in assembly File linking directive

Syntax : INCLUDE filenam e

Includes the named file into the file being assembled at this point. The included
file may in turn employ INCLUDE to include other files. All statements up to the
END of the included file are assembled and assembly then continues at the line
following the INCLUDE directive in the the including file.

See also: GET (synonym)

Appendix C 321

KEEP
Maintain local symbol(s) in symbol table Organizational directive

Syntax : KEEP {symbol}

Retain all symbols (no argument) or the specified symbol in the symbol table for
this object file. The Assembler does not normally include local symbols (those not
exported using EXPORT) in the object file.

See also: IMPORT, EXPORT

322 Appendix C

LCLA, LCLL, LCLS
Declare local variable Symbol definition

Syntax : LCLA variable - name

LCLL variable - name

LCLS vari able - name

Declare a local variable of type Arithmetic, Logical or String and assign the given
variable name to it. Local variables' scope is restricted to a particular instantiation
of a macro. Variables must be declared using either GBLx or LCLx before use; the
SETx directives may be used to assign values to them.

For example:

LCLA Iteration_Count

LCLL AddressSpace26

See also: GBLx, SETx, MACRO

Appendix C 323

LTORG

Literal pool origin Organizational directive

Syntax : LTORG numeri c - exp

Directs that the current literal pool (assembled for use by LDR instructions) be
placed immediately following the d~'" rective; word alignment is used. This would
otherwise occur at the END directi e; a typical use is to bring the literal pool in
range of the 4 kbyte offset limit for IJDR.

324 Appendix C

MACRO
Begin macro definition Macros

Syntax : MACRO

{$label} macroname {$parameter l}{ , $parameter2}

{ , $parame t e r3} ...

. . . instructions ...

MEND

This directive forms the opening clause of a macro definition: it must be followed
by a macro prototype statement (second line of syntax definition above) which
states the name of the macro and its parameters. An optional label is permitted if
the expanded macro needs to have a label.

The Assembler will replace each occurrence of the macro name in the pro­
gram source with the instructions defined for that macro, substituting the label
and parameters for those values supplied on each macro invocation.

For example, the following macro 'Merge' joins 16-bit half-words from two
registers and returns the result in the first:

MACRO
MERGE $r0 , $rl
MOV $r0 , $r0 , LSR #16
ORR $r0 , $r0 , $rl , LSL #16

MEND

and to invoke it:

MERGE

which in turn assembles to:

MOV
ORR

See also: MEND

r4 , r5

r4 , r5 , LSR #16
r4, r4 , r5, LSL #16

Appendix C 325

MEND
End macro definition Macros

Syntax : MEND

This directive forms the closing clause of a macro definition. Refer to the MACRO
directive for more information.

326 Appendix C

MEXIT
Macro early termination Macros

This directive allows an early exit from a macro definition.
Normally a macro is closed with MEND; all Assembler constructs, for

example WHILE/WEND, must have been closed beforehand. MEXIT allows the
macro definition to be finished early and closes all open WHILE/WEND loops or
conditional assembly clauses as it exits the macro.

See also: WHILE/WEND, [I], MACRO, MEND

Appendix C 327

NOFP
No floating-point allowed Miscellaneous

Syntax : NOFP

Advise the Assembler that the target has no floating-point support and ensure
that no floating-point directives or instructions are allowed during the assembly;
an error will be generated upon encountering any of the relevant directives or
instructions.

328 Appendix C

OPT
Set assembly options Listing directives

Syntax : OPT arithmetic - expression

The OPT directive is used to control the listing style of the Assembler from within
the program being assembled. If listing is turned on when the Assembler is
invoked (using the -list command line option) then the value given to OPT
affects the style of listing. Permissible values for OPT may be summed together
from the following list:

Code

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

Effect

Tum on listing

Tum off listing

Form feed (starts a fresh page)

Reset line counter to zero

Tum on listing of SET, GBL and LCL directives

Tum off listing of SET, GBL and LCL directives

Tum on listing of macro expansions

Tum off listing of macro expansions

Tum on listing of macro calls

Tum off listing of macro calls

Tum on listing during the first assembly pass

Tum off listing during the first assembly pass

Tum on listing of conditional directives

Tum off listing of conditional directives

Tum on listing of MEND directives

Tum off listing of MEND directives

The current OPT setting may be interrogated using the pseudo-variable {OPT)
which may be assigned to a variable using SETA, for example:

OldOpt
GBLA
SETA
OPT

OPT

See also: TTL, SUBT

OldOpt

{OPT}

NewValue

OldOpt

Appendix C 329

ORG
Set origin of assembly Organizational directive

Syntax: ORG numeric-expression

The program's origin, that is the initial value of the location counter, is deter­
mined by the ORG directive.

Only one ORG may ever appear in each assembly and no ARM instructions
or store initialization directives may precede it. If no ORG is included the Assem­
bler attempts to generate relocatable output and the location counter is initialized
to zero. ORG is best applied to programs with a single AREA.

For example:

ORG &00080000; starts at &80000

START &00000000; assign START

ORG START ; origin at START

330 Appendix C

RLIST
Define register list Miscellaneous

Syntax : Label RLIST {list - of- regs}

Define a label to refer to a list of ARM integer registers (enclosed by mandatory
braces) for simplicity when issuing LDM/ STM multiple register transfer instruc­
tions.

Registers may be listed in any order; register ranges consisting of two valid
register numbers joined by a dash are also permitted. Registers are always trans­
ferred in the same order regardless of how many or which are included. See
LDM/ STM.

For example:

MyContext RLIST {r0 , rl , r2 , r10-r13}

All Regs RLIST {r0 - r15}

Appendix C 331

RN
Register equate Symbol definition

Syntax : Label RN numeric - expression

Assign a register number to a symbol. The symbol is treated as a constant in an
arbitrary expression; however, only register names equated using this directive
are valid where a register name is required.

AF

BC
DE
HL

LK
PC

For example:

RN

RN
RN

RN

RN

RN

0

1

2

3

14

15

my Z80 emulator regs

332 Appendix C

ROUT
Begin local label region Local labels

Syntax : {label } ROUT

... routine instructions here ...

The ROUT directive is used to demark the scope of a 'routine' within which local
labels may be employed; local labels allow many branch references within the
same routine without requiring unique label identifiers. Local labels are two-digit
numbers in the range 00 to 99.

A local label area begins with the ROUT directive and ends with the next
ROUT directive or the end of assembly.

To define a local label enter it at the start of a line, optionally followed by
the routine name within which it resides, for example:

MyRoutine ROUT

OOMyRoutine MOV rO , rl

CMP rO , #3
BNE %BT00My Routine

To refer to a local label a % symbol introduces the label in a statement
whose syntax is of the form:

%{x}{y}<label_ number>{routine_ name}

where the optional x field gives the Assembler a hint about which direction to
search for the label (B for backwards, F forwards) and the optional y field indi­
cates whether to look at: A, all macro levels; or T, only this macro level.

See also:%

Appendix C 333

SETA,SETL,SETS
Assign value to assembly variable Symbol definition

Syntax:

variable - name SETA arithmetic - expression

variable-name SETL logical-expression

variable-name SETS string-expression

Assign a value to a local or global variable previously declared using GBLx or
LCLx.

The expression is evaluated and its value assigned to the named variable; an
error or coercion will occur if the types don't match. For example, single ASCII
characters are coerced into their (arithmetic) ASCII value.

The pseudo-values {TRUE) and {FALSE) may be used in assignments to log­
ical variables.

For example:

ArithVar
Ecstasy
BoolVar
StringVar SETS

See also: GBLx, LCLx

GBLA Ari th Var
GBLL BoolVar
GBLS StringVar

SETA &41560601
SETA "E"
SETL {TRUE}
"ARM600 "

334 Appendix C

SUBT
Set subtitle string Listing directives

Syntax : SUBT subtitle-string

Set a subtitle string to be printed at the top of each page of Assembler listing,
assuming listing is turned on. A null string results in a blank subtitle line. Only the
most recently encountered subtitle appears on the listing pages.

Listing is controlled both by the Assembler command line option - list
and by the current OPT directive setting.

See also: TTL, OPT

Appendix C 335

TTL
Set title string Listing directives

Syntax : TTL title_ string

Set a title string to be printed at the top of each page of Assembler listing, assum­
ing listing is turned on. A null string results in a blank title line. Only the most
recently encountered title appears on the listing pages.

Listing is controlled both by the Assembler command line option - list

and by the current OPT directive setting.

See also: SUBT, OPT

336 Appendix C

WEND
End while

Syntax :

Conditional assembly

WHILE logical - expr e s sion

. . . instructions assembled while expression
is true ...

WEND

Instruction sequences delimited by WHILE ... WEND are assembled only if the log­
ical expression evaluates true. An assemble-time loop is produced, useful for gen­
erating tables etc.

Each WHILE must always be matched by a WEND. It is also permissible to
escape from a WHILE inside a macro using MEXIT.

See also: WHILE, MACRO, MEXIT

While

Synt ax :

Appendix C 337

WHILE
Conditional assembly

WH I LE logical - expres s ion

... instructions assembl ed whi l e express i on
is true ...

WEND

Instruction sequences delimited by WHILE ... WEND are assembled only if the log­
ical expression evaluates true. An assemble-time loop is produced, useful for gen­
erating tables etc.

Each WHILE must always be matched by a WEND. It is also permissible to
escape from a WHILE inside a macro using MEXIT.

See also: WEND, MACRO, MEXIT

Bibliography

ARM Limited (1991). VIDC20 Data Sheet. Cambridge: ARM Limited.

ARM Limited (1992). ARM6 Data Sheet. Cambridge: ARM Limited.

ARM Limited (1992). ARM60 Data Sheet . Cambridge: ARM Limited.

ARM Limited (1992). ARM600 Data Sheet. Cambridge: ARM Limited.

ARM Limited (1992). ARM610 Data Sheet. Cambridge: ARM Limited.

ARM Limited (1992). FPA10 Data Sheet. Cambridge: ARM Limited.

Furber S. B. (1989). VLSI RISC Architecture and Organization. New York: Marcel
Dekker Inc.

GEC Plessey Semiconductors (1992). ARM250 Datasheet. Swindon: GEC Plessey
Semiconductors.

Hennessy J.L and Patterson D.A. (1990). Computer Architecture: a Quantitative
Approach. Palo Alto: Morgan Kaufmann Publishers Inc.

Kane G. (1988). MIPS RISC Architecture. New Jersey: Prentice-Hall Inc.

Pountain D. (1992). A call to ARM. Byte, November, 293-298.

Pountain D. (1993). Computing without Clocks. Byte, January, 145-150.

VLSI Technology, Inc. (1990). Acorn RISC Machine Data Manual. New Jersey: Pren­
tice-Hall Inc.

VLSI Technology, Inc. (1992). ARM Cross-Development Toolkit. San Jose: VLSI Tech­
nology, Inc.

339

Index

! 292
50, 293
% 50,295
&294
• 296
= 297
I\ 50, 301
I 300

65022

Aborts 107
abort mode 108
data 108, 113, 147
prefetch 108, 113, 147

ABS 186, 187, 248
ABS (AREA attribute) 43
Access permissions 134
Acorn 54
Acorn Computers 1, 172

Archimedes 8
ARM25018
Communicator 3
Master 3

ACS 186, 188, 249
ADC 74,210
ADD 74, 78, 211
Address bus 153

Memory Request (nMREQ) 153
Sequential (SEQ) 153

Address space support
and the ARM Toolkit 38

Address translation 137
ADF 189, 250
ADR82, 212
Aleph0ne9
ALIGN 43, 50, 302
Alignment fault 143
AMD290004

AND76,213
Apple Computer 2, 9, 175

AppleII2
Apple JIGS 3
Macintosh 7
Newton 13

Apple II 2
Apple JIGS 3
Apple Macintosh 7, 38, 166
Archimedes 8
AREA 303

attributes 43
Areas43
ARM architecture

support for floating point 181
ARM architecture extensions 121
ARM Assembler 40-53

built-in variables 47
command-line switches 52
conditional assembly 47
constants 44
input format 40
labels 40
listing options 52
local labels 41
macros48
repetitive assembly 47

ARM Assembler. 55
ARM C Compiler

command-line options 54
ARM C compiler 53-55
ARM Cross Development Toolkit 11
ARM development environment 37
ARM instructions

Multiply 6
ARM Ltd 1

chip numbering system 11
Foundation 10

ARM Object Format 55

341

342 Index

ARM processors
32-bit 170
ARM2 ??-9
ARM25018
ARM2aS 10
ARM39
ARM611
ARM6013
ARM600122
ARM61017
IOC8
MEMCS,8
self-timed 171
static 167
VIDC 5, 8

ARM Symbolic Debugger 57
ARMl 4-6, 166
ARM2 8-9, 124, 166
ARM25018, 172
ARM2aS 10, 167, 172
ARM3 9, 123, 166

cache 129
ARM611

external hardware interfaces 149
integer instruction set 61-105

ARM60 13, 170
ARM600 131, 174

bus interface 150
cache 129
MCLK hold time 152
multi-processor support 162
system control coprocessor 122
test inputs 160

ARM61170
ARM610 17, 174

system control coprocessor 122
armasm 38, 40-53
armcc 38, 53-55
armlink38
armsd 38, 57
ARMulator 54, 58, 59
ASIMS
ASN 186, 188, 251
ASR68
Assembler 38
ASSERT 304
Asynchronous clock modes 152
ATN 186, 188, 252

B 95, 108, 214
Base register write-back 85
BASEDRn43
BASICS
BBC Microcomputer 2, 5
BIC 77,215
Bit clear 77
BL 72, 95, 109, 216
Boolean constants 44
Branch 95

British Broadcasting Corporation 2
Bus enables 160
Bus interface

ARM600150
clock inputs 150
wait-state control 150

Byte addressing 156
Byte sex 58, 64

and the ARM Toolkit 38
instruction restrictions 103

c 5, 118
C compiler 38
C Libraries 53
Cache 125

control 162
programming for the 131

CDP 99, 217
Clock inputs 150
Clock modes 152
Clocks

coprocessor interface 159
CMF253
CMN 66, 78, 218
CMP 66, 78, 219
CN305
CNF254
CODE43,55
COMDEF43
Command-line options

C compiler 54
Linker 57

Command-line switches 52
Comments

ARM Assembler 42
Commodore2
COMMON43
Communicator 3
Computers

Archimedes 8
Condition code flags 66
Conditional assembly 47
Conditional execution 62

codes 63
Constants 44
Control register 124
Control signals

coprocessor 159
Coprocessor

register transfer instructions 100
Coprocessor control signals 159
Coprocessor data bus 159
Coprocessor data operations 99
Coprocessor instructions 99
Coprocessor interface clocks 159
Coprocessors

interface 158
specific instructions 101
system control 122

cos 186, 188, 255
CP306
CPU ID register 123

DATA43
Data abort 113
Data aborts 104, 147
Data address space size

and the ARM Toolkit 38
Data bus 155

coprocessor 159
locked bus operations 156

Data movement instructions 82
Data processing instructions 65

and r15102
DCB 50, 307
DCD 50, 308
DCFD309
DCFS310
DCW 50, 311
Debugger 38
DEC

Alpha 64
VAX architecture 64

Development tools 11
Die size 6
Direct Memory Access (OMA) 178
Directives

equational45
Division 205
Domain access control 126
Domain fault 143, 146
DOS38
DVF 189, 256

ELSE47
END50,312
Endianness 64

instruction restrictions 103
ENDIF47
ENTRY 313
EOR 76,220
EQU 314
Equational directives 45
Exceptions 107

and C signals 118
division by zero 206
exception vectors 108
floating point 205
from the application's perspective 117
inexact 207
invalid operation 205
overflow 206
priori ties 110
undefined instruction 112
underflow 206

EXP 186, 188, 257
EXPORT 315
External hardware interfaces 149

Fast clock 151
Fault Address Register 127
Fault Status Register 126
FCLK 151
FDV 189, 258
FIQ interrupt 108, 109, 114
FIX 194, 259
Floating point

compare instructions 195
data operations 185
exceptions 205
multiple data transfer instructions 192
programmer's model 182
register transfer instructions 194
single data transfer instructions 191
stack operation options 194
status and control (FPSR/FPCR) regis-

ter transfers 201
Floating point formats 183
Floating point instructions 181
Floating point Status Register (FPSR) 202
FLT 194, 260
FML 189, 261
FN316
FPAlO 175, 182
FPSR

Exception trap enable byte 203
Exceptions flags byte 204
System Control byte 203
System ID byte 202

FRO 189, 262
Furber, Professor Steve 4

GBLA317
GBLL317
GBLS317
GEC Plessey Semiconductors 15
GET 318

Hauser, Hermann 8
Heaton, Robert 4
I
IBM6
IDC flush control register 128
IF 47
IMPORT319
INCLUDE320
Inexact 205
Instruction and data cache 125-128
Instructions 42

floating point 181
Integer instructions 61-105

data processing 65
Intel 64
Intel 80486129
Intel i860 4
Interactive Multiplayer 13
Interfacing the ARM 149

343

344 Index

Interrupt inputs 157
Interrupt latency 117
Interrupts 107

FIQ 114
handling 114
hardware 108
IRQ 113
software 108

Invalid operation 205
IOC 8, 166
IRQ interrupt 108, 113

JTAG Boundary Scan 161

KEEP 321

Labels 40
LCLA 322
LDC 99, 221
LDF 192, 193, 263
LDM 117, 222
LDR 51, 83, 87, 223
Level One Descriptor 137
Level One Descriptor Fetch 137
Level One translation table 125
Level Two fetch 140
LFM 194, 265
LGN 186, 188, 266
Linker38,43, 55-57

command-line options 57
Listing options

ARM Assembler 52
Local area networking 3
Local labels 41
Locked bus operations 156
LOG 186, 188, 267
Low-level debugging 58
LSL67
LSR67
LTORG 51, 323

Macintosh 7
MACRO 48, 324
Macros48

nesting 42
Master 3
MCLK151

cycle speed 152
MCR 100, 225
MEMC 5, 8, 166
Memory domains 134
Memory interface clock 151
Memory management hardware

and the ARM Toolkit 38
Memory management unit 125, 134

access permissions 134
address transl a ti on 137
and the cache 131
control circuitry 162

faults 143
MEND48,325
MEXIT 49, 326
MIPS64
MLA 81, 117, 226
MNF 186, 187, 268
Modula-25
Motorola 64
Motorola 68000 7
Motorola 68040 129
MOV 65, 70, 227
MRC 100,228
MRS97,229
MSR 97, 230
MUF 189, 269
MUL 81, 117, 231
Multi-mapped regions 131
Multiple-register data movement instruc-

tions 88
Multiplication 81
Multiply 6
MVF 186, 187, 270
MVN 65, 70, 232

NaN exception control 204
National Semiconductor 32016 7
Newton 13, 175
NIF15
Nintendo 13
No operation 73
NOFP327
NOINIT43
NOP73,233
NOPs 111
NRM 186, 189, 271
Numeric constants 44

Olivetti 7
Operands

for data processing instructions 65
OPT328
ORG329
ORR 76, 234
Overflow 205

pee 53
Permission fault 143, 146
Personal digital assistants 13
PIC43
Platform Independent Evaluation (PIE)

card 11, 39
POL 189, 272
Position-independent code 43
Post-indexed addressing 193
Post-indexed addressing modes 85
POW 189,273
Prefetch aborts 147
Pre-indexed addressing 84
Processor modes 108

Processor status register 109
Processors

6502 2
AMD290004
ARM14-6
ARM28-9
ARM39
Intel 80486129
Intel i860 4
Motorola 68000 7
Motorola 68040 129
National Semiconductor 32016 7
SPARC4

Program counter 61, 94-95, 109
Program counter size

and the ARM Toolkit 38
Program Status Register 95
Program Status Register transfer instruc­

tions 97
Programming languages

BASICS
c 5, 118
Modula-2 5

PSR66

QuickColor 166
QuickDesign 16

RDF 189, 274
Read-lock-write 131
READONLY43
Re-entrancy 43
REENTRANT 43
Registers

banked 109
control 124
CPU ID register 123
domain access control 126
fault address 127
fault status 126
floating point status 202
IDC flush control 128
processor status 109
system coprocessor control 123
translation table base 125

REL43
Remote Debug Interface 58
Remote debug options 58
Remote Debug Protocol 58
Repetitive assembly 47
Reset 108, 157

Exceptions 111
RFC 202, 275
RFS 201, 276
RISCOS57
RUST 330
RMF 189, 277
RN331
RND 186, 187, 278

ROR68
Rotates 65
ROUT41,332
RPW 189,279
RRX69
RSB 75, 235
RSC 75, 236
RSF 189, 280

Saxby, Robin 10
SBC 75, 237
Sega 13
Semaphore SWP instruction 131
SETA 333
SETL333
SETS 333
SFM 194, 281
Sharp Corporation 15
Shifts 65, 67
SIN 186, 188, 282
Sinclair 2
Software Development Toolkit 37

configuring 38
Software Interrupt

Exceptions 112
Software interrupt 101, 108
SPARC 4, 16, 64
SQT 186, 188, 283
Stack-limit checking 39
Stacks 89

r13 as stack pointer 109
Stanford University 4
STC 99, 238
STF 192, 193, 284
STM 88, 117, 239
Storage reservation directives 50
Store layout directives 50
STR 51, 83, 240
String constants 44
SUB 75, 78, 242
SUBT334
SUF 189, 286
Sun Microsystems 4
Supervisor mode 108
Swap 88
SWI101, 112,117,243
SWP 88, 131, 156, 244
Symbolic Debugger 57
Symbols45
Synchronous clock modes 152
Syntax conventions 62
System control coprocessor 122

registers 123

TAN 186, 188, 287
Tandy 2
TEQ 66, 80, 245
Test inputs 160
Texas Instruments 15

345

346 Index

Translation fault 143, 146
Translation look-aside buffer 126, 136
Translation table base 125
TST 66, 80, 246
TTL 53, 335

Un-cacheable regions 131
Undefined instruction 108, 112
Underflow 205
Unix 38, 53
URD 186, 189, 288

Variables 45
declaring 47

VIDC 5, 8, 166
VIDC20 175, 178
Virtual addresses 131
VLSI Technology 5, 9, 15

Wait states
control with n WAIT 152

Wait-state control 150
WEND48,336
WFC 202,289
WFS 201, 290
WHILE 48, 337
Wilson, Roger 4
Write buffer 125, 132

programming for the 133
Write-back 193
Writing assembler 40

